A Randomize Protocol for Consensus

A complete network graph (clique)
- total number of processes.
- total number of faulty processes.

Assumption: \(n > 5f \).

This algorithm solves a more complex problem where the failure model is Byzantine, i.e. the failed processes can send arbitrary messages to arbitrary processes (may lie), or may fail.

The protocol (Ben-Or variation)

Round=0; \(x \) = initial value

Do Forever:
- Round = Round + 1
- Step 1
- Step 2

Step 1:
- Send Proposal(Round,\(x \)) to all processes
- wait for \(n-f \) messages of type Proposal(Round,*)
- if at least \(n-2f \) messages have the same value \(v \) then \(x = v \) (that value)
- else \(x = \text{undefined} \)
The Protocol (cont.)

Step 2:
Send $\text{Bid}(\text{Round}, x)$ to all processes
wait for $n-f$ messages of type $\text{Bid}(\text{Round}, *)$
v is the real value (0/1) occurring most often
and m is the number of occurrences of v
if $m \geq 3f+1$
then \textbf{Decide} ($x = v$)
else if $m \geq f+1$
then $x = v$
else $x = \textbf{random}$ (0 or 1)

Submission: Thursday, October 27 at the beginning of class.
Solution must be typed. No collaboration is allowed.

Homework

1. Prove that the protocol in pages 20-22 is correct.
i.e. that it satisfies the agreement, validity and
termination (with probability 1) requirements.
Termination means - for reaching a decision.
Assume at most f Byzantine failures.

The communication is reliable FIFO unicast,
although messages from different processes can
arrive in different order to different processes.

2. (only 437) Modify the algorithm so that
eventually, all non faulty processes that decide also halt.
Try to make the modification as simple as possible.