Distributed Systems
600.437
Introduction

Department of Computer Science
The Johns Hopkins University

Course Information

- Lecture/Tutorial: Tuesday 3pm – 4:15pm, Shaffer 300
- Lecture/Tutorial: Thursday 3pm – 4:15pm, Shaffer 300
- Instructor: Yair Amir
 - Office hours: Malone 209/207 Thursday 1pm – 2pm
- TA: Tom Tantillo
 - Office hours: Malone 209/207 Monday 1pm – 2pm
- Special help: Emily Wagner, Amy Babay
 - DSN lab – Malone 207
- E-mail contact to all of us: cs437-help@dsn.jhu.edu
- Course mailing list: www.dsn.jhu.edu/mailman/listinfo/cs437-2016
- Course web page: www.dsn.jhu.edu/courses/cs437/
E-mail is best. Next, come to office or lab.
This Week and Next

• Thursday
 – Getting to know each other
 – Introduction to the course

• Next Tuesday
 – Introduction to the course (cont)
 – Basic network protocols

• Next Thursday
 – Tutorial, first practical exercise

• Goal
 – By the end of next week, you have the information you need to decide if you want to take the course

Lets go around the room

• Name
• Department
• Degree (BS, BS/MS, MS, PhD)
• Year in degree (1, 2, 3, 4)
• Programming experience
 (C, C++, Java, etc. / school - outside of school)
• Other relevant experience (networking, systems)
• Why are you here ☺
 (what do you expect from the course ?)
Grading Policy

• Two written assignments
• Three programming assignments
• One final project, presentation date: 12/21/2016
• Attendance!
• No exam 😊
 18% + 42% + 30% + 10% = 100%

The difference between 337 and 437:
 Depth of the assignments and the project
 There is no difference in grading

• Ethics code: standard CS code www.cs.jhu.edu
• Zero tolerance for ethics problems
 – We invest a lot and expect a lot in return

Programming language: C or C++
Testing environment: the undergrad lab - ugrad1-20
Need to get an account!!

Course Overview

Lecture 1

Recommended Book:
 Guide to Reliable Distributed Systems
 Kenneth P. Birman
 Springer 2012
 ISBN: 978-1447124153

http://www.dsn.jhu.edu/courses/cs437/
A Distributed System

Why Distribute?

- Bridge geographic distances.
- Improve performance.
- Improve availability.
- Maintain autonomy.
- Lower the cost.
- Specialization (e.g., GPUs)
- Allow for interaction.
Why Distribute?

- Bridge geographic distances.
- Improve performance.
- Improve availability.
- Maintain autonomy.
- Lower the cost.
- Specialization (e.g. GPUs)
- Allow for interaction.

Software solutions are needed!
Course Content

• Introduction. Sep 1
• Course intro + Basic Network Protocols Sep 6
• Synchronous models in distributed environments Sep 13-15
• Messaging Systems (benign model) Sep 20–22–27–29
 – Multicast, group communication, overlay networks
• Asynchronous models in distributed environments. Oct 4 – Oct 6
• Consistent State (benign model) Oct 11–13–18–25
 – Distributed transactions, replication, Paxos, Congruity
• Intrusion-Tolerant Replication Oct 27 – Nov 1 – 3
 – BFT, Prime, Proactive Recovery, applications of intrusion tolerant replication
• Intrusion-Tolerant Messaging Nov 8 – 10
• Final project discussions Nov 15 – 17
• Large-scale Data Stores & Probabilistic Protocols Nov 29 – Dec 1
• Knowledge in Distributed Systems (game) Dec 6
• Course summary Dec 8
• Presenting and discussing exercises
• Communication using Unix sockets:
 – Reliable point-to-point communication (TCP/IP)
 – Non-reliable p-to-p communication (UDP/IP)
 – Non-reliable Broadcast, Multicast (UDP/IP)
• The Spread toolkit
• The Spines overlay messaging system

• Thursday Sep 8 – point to point tutorial
• First practical exercise – Thursday Sep 8
• Submission of first exercise: Monday Sep 19, 11pm
• Tuesday Sep 27 – Multicast tutorial
• Second practical exercise – Tuesday Sep 27
Synchronous and asynchronous models.

Some Theory :)
Messaging Systems: Group Communication

Spread: A Group Communication Toolkit

Spread provides:

- Process groups across local and wide area networks (Internet).
- Consistent service semantics:
 - Various levels of reliability
 - Various levels of message ordering
 - Membership services.
- High performance.
Process groups in Spread

- One Spread daemon in each machine
- Multiple destination groups per message

Messaging Systems: Overlay Networks

- Application-level routers working on top of a physical network.
- Overlay links consist of multiple “physical” links.
- Incurs overhead.
- Placement of overlay routers not optimal.
- Flexible use of peer-protocols.
- Provides added value.
The Spines Overlay Messaging System

- Daemons create an overlay network on the fly
- Clients are identified by logical addresses identical to Internet addresses (IP address and a port ID)
- Clients feel they work with standard Internet protocols
- Protocols designed to support up to 1000 daemons (locations), each daemon can handle up to about 1000 clients

www.spines.org

A Global Overlay in Action
Consistent State: A Distributed Database

Distributed Transactions

When data is spread over several database servers, there should be a way to coordinate transactions so that they will be:

• Atomic - either all effects take place, or none.
• Consistent - correct.
• Isolated - as if there was one serial database.
• Durable - effects are not lost.

Atomic Commit Protocols correctly coordinate distributed transactions.
Consistent State: Replication

Considerations:

- Improve availability
- Improve performance for queries (higher throughput, lower latency).
- Cost
- Soft state / Persistent state
- Update rate / State size.
- Dynamic instantiation and consolidation.

Fault model? Guarantees? Performance?

Paxos Replication

- A very resilient protocol. Only a majority of participants are required to make progress.
- All participants are trusted.
- Works well on unstable networks.
Congruity Replication
Replication over Group Communication

Intrusion Tolerant Replication
BFT

- Byzantine Fault Tolerance [Castro and Liskov, 99]
- 2/3 total servers +1 are required to make progress.
- Three rounds of message exchanges.
- Works even if up to (but less than) 1/3 of servers are compromised!
Intrusion Tolerant Replication
Prime

- **Performance Guarantees under Attack** [Amir, Coan, Kirsch, Lane, 2008]
- Works even if up to (but less than) 1/3 of servers are compromised!
- **Bounded-Delay**: There exists a time after which the update latency for any update initiated by a stable server is upper-bounded.

Yair Amir

Intrusion Tolerant Replication Application: Critical Infrastructure

- **Supervisory Control and Data Acquisition (SCADA)** systems form the backbone of critical infrastructure services
- Today’s systems tolerate “benign” faults but are not built to survive intrusion attacks
 - Assumption of private network no longer holds - systems move to the Internet
 - SCADA is increasingly a target for attackers
- Intrusion tolerant replication serves as an important building block for intrusion-tolerant SCADA

Yair Amir
Intrusion Tolerant Messaging

- Distributed systems can span wide area locations and rely on geographically-distributed networks to communicate
- Underlying network must be intrusion-tolerant to protect against network intrusions
- Normal routing algorithms are insufficient
 - Nodes are trusted and routing updates determine path calculations
 - Compromised nodes can disrupt the routing protocol by lying in their updates

Intrusion Tolerant Messaging

- Any node can be a source
- Any node can be compromised
- Compromised nodes may be undetectable
 - Cannot prefer one node’s traffic over another’s
 - Risk of favoring compromised nodes and starving correct sources traffic
- Ensure fairness and guarantee performance for flows even while under attack
- Requires cryptographic mechanisms for authentication and integrity
Large-scale Data Stores

- The promise:
 - Data stores can be built to scale horizontally (by adding more machines)
- Advantages:
 - Can run on hundreds of machines
 - Can scale up and down elastically as needs change
- Challenges:
 - Stability – the system needs to handle failures
 - Consistency – transactions can require coordination across many machines

Basic Communication Protocols

Lecture 1

Internetworking with TCP/IP Volume I D. E. Comer
Automatic Repeat reQuest (ARQ) Protocols.

Causes for message omission:
- Buffer spill.
- Error detection in a packet.

ARQ protocols:
- Send & Wait.
- Arpanet.
- Go back n.
- Selective Repeat.

Send & Wait ARQ

Example 1:
Send & Wait ARQ (cont.)

Example 1:

Ack 0

X

Ack 0

Ack 1

Example 2:

Ack 0

X

Ack 1

Ack 1

(2 can be 0)
Arpanet ARQ

- Better line utilization than S & W.
- Unlimited memory required in theory.

Go back n ARQ

Example for Go back 4
- Good utilization
- Limited memory required (one packet only).
- Full window is retransmitted in case of (one) error.
Selective Repeat ARQ

- Sliding window technique (as Go back \(n \)).
- Specifically indicating which packet is missing.
- Combines nacks and cumulative acks.
 - Acks acknowledge all messages with index of up to and including the ack value.
 - Nacks (negative acknowledgements) specifically request the messages with the indices in the nacks’ values.
- Limited memory required (a full window).

Question: What if there is no feedback?

- A word about forward error correction (FEC), Internet loss patterns, etc.
Medium Access Control for Multi-access Communication.

- The best utilization if everyone always has something to send.
- Wastes time if this is not the case.
- Slots can be unevenly assigned.

Time Division Multiplexing (TDM)

- Slot 1 Slot 2 Slot 3 Slot 4 Slot 1
Slotted Aloha (Theoretical)

- Send at the next slot.
- If collision occurs - pick a random waiting time and send again at the next slot.

- Breaks.
- Maximal utilization is 0.36 (but much less for a desired behavior).

Aloha

- Send immediately.
- If collision occurs - pick a random waiting time and send again at that time.

- Breaks.
- Maximal utilization is 0.18 (but much less for a desired behavior).
Carrier Sense Multiple Access (CSMA)

- Listen to the line. Send if line is free.
- If collision occurs - pick a random waiting time and try again at that time.

CSMA/CD

Carrier Sense, Multiple Access with Collision Detection.

Points to clarify:
- Propagation delay.
- X persistent CSMA
- Splitting algorithm for collisions

Ethernet = Persistent CSMA/CD with binary exponential backoff.
Token Ring

- Token loss.
- Node crash.

A Star Configuration

Can be used to mimic a bus configuration. e.g. for Ethernet, Fast Ethernet, 1Gig Ethernet, 10Gig Ethernet, or Token Ring.
Routing

- Distance vector routing
- Link state routing
- Inter-network routing

Distance Vector Routing

- Each router knows the id of every other router in the network.
- Each router maintains a vector with an entry for every destination that contains:
 - The cost to reach the destination from this router.
 - The first link that is on that least-cost path.
- Each router periodically sends its vector to its direct neighbors.
- Upon receiving a vector, a router updates the local vector based on the direct link’s cost and the received vector.
Link State Routing

- Each router knows the id of every other router in the network.
- Each router maintains a topology map of the whole network.
- Each router periodically floods its direct links state (with its direct connectivity information).
- Upon receiving a vector, a router updates the local topology map and re-calculates shortest paths.

Internet Routing

- Routing Information Protocol:
 - Distance vector protocol.
 - Hop count metric
 - Exchange is done every 30 seconds, fault detection every 180 seconds.
 - Cheap and easy to implement, unstable in the presence of faults.

- Open Shortest Path First:
 - Link state protocol.
 - Internal hierarchy for better scaling.
 - Optimization for broadcast LANs with routers on them. (A designated router represents the whole LAN) - Saves control messages and size.
Internet Routing (cont).

• A hierarchical routing protocol that connects networks, each of which runs an internal routing protocol.
• OSPF or RIP are common internal protocols.
• BGP - Border Gateway Protocol -
 – A path vector protocol with additional policy information for each path. Path vector protocols have the complete path in each entry and not only the next direct member.
 – Generally used as the hierarchical routing protocol.

Important Issues

• Flow Control.
• Stability.
• Management.
• Security.
Information Slide

- Code material is available on the CS undergrad lab machines (ugrad1-ugrad20) in the directory ~cs437/tutorials/
- A web page of reference material and programming documentation is available at http://www.dsn.jhu.edu/courses/cs437/ref.html
- Lecture slides can be obtained at the course web page http://www.dsn.jhu.edu/courses/.
- Join the course mailing list!!
- Make sure you have a Linux account for the ugrad lab ugrad1-ugrad20.