Framework for Authentication and Access Control of Client-Server
Group Communication Systems *

Yair Amir, Cristina Nita-Rotaru, Jonathan R. Stanton
Department of Computer Science
Johns Hopkins University
3400 North Charles St.
Baltimore, MD 21218 USA
{yairamir, crisn, jonathan}@cs.jhu.edu

Abstract

Researchers have made much progress in designing secure and scalable protocols to provide
specific security services, such as data secrecy, data integrity, entity authentication and access
control, to multicast and group applications. However, less emphasis has been put on how to in-
tegrate security protocols with modern, highly efficient group communication systems and what
issues arise in such secure group communication systems. In this paper, we present a flexible
and modular architecture for integrating many different authentication and access control poli-
cies and protocols with an existing group communication system, while allowing applications
to provide their own protocols and control the policies. This architecture maintains, as much
as possible, the scalability and performance characteristics of the unsecure system. We discuss
some of the challenges when designing such a framework and show its implementation in the
Spread wide-area group communication toolkit.

1 Introduction

The Internet is used today not only as a global information resource, but also to support collab-
orative applications such as voice- and video-conferencing, white-boards, distributed simulations,
games and replicated servers of all types. Such collaborative applications often require secure
message dissemination to a group and efficient synchronization mechanisms. Secure group commu-
nication systems provide these services and simplify application development.

A secure group communication system needs to provide confidentiality and integrity of client
data, integrity, and possibly confidentiality, of server control data, client authentication, message
source authentication and access control of system resources and services.

Many protocols, policy languages and algorithms have been developed to provide security ser-
vices to groups. However, there has not been enough study of the integration of these techniques
into group communication systems. Needed is a scheme flexible enough to accommodate a range
of options and yet simple and efficient enough to appeal to application developers. Complete se-
cure group communication systems are very rare and research on how to transition protocols into
complete systems has been scarce.

Secure group systems really involve the intersection of three major, and distinct, research areas:
networking protocols, distributed algorithms and systems, and cryptographic security protocols.

*This work was supported by grant F30602-00-2-0526 from The Defense Advanced Research Projects Agency.

A simplistic approach when building a secure group system is to select a specific key manage-
ment protocol, a standard encryption algorithm, and an existing access control policy language and
integrate them with a messaging system. This would produce a working system, but would be com-
plex, fixed in abilities, and hard to maintain as security features would be mixed with networking
protocols and distributed algorithms.

In contrast, a more sophisticated approach is to construct an architecture that allows applica-
tions to plug-in both their desired security policy and the mechanisms to enforce the policy. Since
each application has its particular security policies, it is natural to give an application more control
not only on specifying the policy, but on the implementation of the services part of the policy too.

This paper proposes a new approach to group communication system architecture. More pre-
cisely, it provides such an architecture for authentication and access control. The architecture is
flexible, allowing many different protocols to be supported and even be executing at the same time;
it is modular so that security protocols can be implemented and maintained independently of the
network and distributed protocols that make up the group messaging system; it allows applications
to control what security services and protocols they use and configure; it efficiently enforces the
chosen security policy without unduely impacting the messaging performance of the system.

As many group communication systems are built around a client-server architecture where a
relatively small number of servers provide group communication services to numerous clients, we
focused on systems utilizing this architecture. Ip

We implemented the framework in the Spread wide-area group communication system. We
evaluate the flexibility and simplicity of the framework through six case studies of different authen-
tication and access control methods. We show how both simple (IP based access control, password
based authentication) and sophisticated (SecurID, PAM, anonymous payment, and group based)
protocols can be supported by our framework.

Note that this paper is not a defense of any particular access control policy, authentication
method or group trust model. Instead, it provides a flexible, complete interface to allow many
such polices, methods, or models to be expressed and enforced by an existing, actively used group
communication system.

The rest of the paper is organized as follows. Section ll overviews related work. We present the
authentication and access control framework and its implementation in the Spread toolkit in Section
B We provide several brief case studies of how diverse protocols and policies can be supported by
the framework in Section ll Finally, we conclude and discuss future directions.

2 Related Work

There are two major directions in secure group communication research. The first one aims to
provide security services for IP-Multicast and reliable IP-Multicast. Research in this area assumes
a model consisting of one sender and many receivers and focuses on the high scalability of the
protocols. Since the presence of a shared secret can be used as a foundation of efficiently provid-
ing data confidentiality and data integrity, a lot of work has been done in designing very scalable
key management protocols. Examples of such protocols are: the Group Key Management Pro-

tocol (GKMP) [, Multicast Key Management Protocol (MKMP) [M], the Scalable Multicast
Key Distribution (SMKD) [#] approach based on the Core Based Trees [, Intra-domain Group
Key Management Protocol (IGKMP) [, the VersaKey Framework [and the Group Secure

Association Key Management Protocol (GSAKMP) [#].

!Some of the work may apply to network level multicast, but we have not explored that.

The second major direction in secure group communication research is securing application level
multicast systems, also known as group communication systems. These systems assume a many-to-
many communication model where each member of the group can be both a receiver and a sender,
and provide reliability, strong message ordering and group membership guarantees, with moderate
scalability. Initially group communication systems were designed as high-availability, fault-tolerant
systems, for use in local area networks. Therefore, the first group communication systems ISIS
[, Horus [#¥], Transis [¥], Totem [¥], and RMP [#] were less concerned with addressing security
issues, and focused more on the ordering and synchronization semantics provided to the application
(the Virtual Synchrony [¥] and Extended Virtual Synchrony [models).

The number of secure group communication systems is small. Besides our system (Spread), the
only implementation of group communication systems that focus on security are the RAMPART
system at AT&T [, the SecureRing [M] project at UCSB and the Horus/Ensemble work at
Cornell . A special case is the Antigone [M] framework, designed to provide mechanisms
allowing flexible application security policies. Most relevant to this work are the Ensemble and
the Antigone systems. Ensemble focused on optimizing group key distribution, and chose to allow
application-dependent trust models in the form of access control lists treated as replicated data
within the group. Authentication is achieved by using PGP. Antigone instead, allows flexible
application security policies (rekeying policy, membership awareness policy, process failure policy
and access control policy). However, it uses a fixed protocol to authenticate a new member and
negotiate a key, while access control is performed based on a pre-configured access control list.

We also consider frameworks designed with the purpose of providing authentication and/or
access control, without addressing group communication issues. Therefore, they are complementary
to our work. One of these frameworks is the Pluggable Authentication Module (PAM) [#¥] which
provides authentication services to UNIX system services (like login, ftp, etc). PAM allows an
application not only to choose how to authenticate users, but also to switch dynamically between the
authentication mechanisms without (rewriting and) recompiling a PAM-aware application. Other
frameworks providing access control and authentication services are systems such as Kerberos [l
and Akenti [l]. Both of them have in common the idea of authenticating users and allowing access
to resources, with the difference being that Kerberos uses symmetric cryptography, while Akenti
uses public-key cryptography to achieve their goals.

One flexible module system that supports various security protocols is Flexinet [l]. Flexinet
is an object oriented framework that focuses on dynamic negotiations, but does not provide any
group-oriented semantics or services.

3 General System Architecture

The overall goal of this work is to provide a framework that integrates many different security pro-
tocols and supports all types of applications which have changing authentication and access control
policy requirements, while maintaining a clear separation of the security policy from the group
messaging system implementation. In this section, after discussing some design considerations, we
present the authentication and access control frameworks.

3.1 Why is a General Framework Needed?

When a communication system may only be used with one particular application, integrating
the specific security policy and needed protocols with the system may make sense. However,
when a communication system needs to support many different applications that may not always
be cooperative, separating the policy issues which will be unique to each application from the

enforcement mechanisms which must work for all applications avoids an unworkable “one-size-fits-
all” security model, while maintaining efficiency.

Separating the policy implementation from both the application and the group communication
system is also useful because in a live, production environment, the policy restrictions and access
rules will change much more often than the code or system changes. So modifications of policy
modules should not require recompiling or changing the application code.

The features of the general framework, as opposed to the features of a particular authentication
or access control protocol, are:

1. Individual policies for each application.

2. Efficient policy enforcement in the messaging system.

3. Simple interface for both authentication and access control modules.
4. Independence of the messaging system from security protocols.

5. Many policies and protocols work with the framework, including: access control lists, password
authentication, public/private key, certificates, role based access control, anonymous users,
and dynamic peer-group policies.

We distinguish between authentication and access control modules to provide more flexibility.
Each type of module has a distinctive interface which supports its specific task. The authentication
module verifies that a client is who it claims to be. The access control module decides about all
of the group communication specific actions a client attempts after it has been authenticated: join
or leave a group, send an unicast message to another client or multicast a message to a group. It
also decides whether a client is allowed to connect to a server (the access control module can deny
a connection even if the authentication succeeded).

Supporting all possible policies is an important goal, however, this goal has some specific prob-
lems that make achieving it costly in performance and simplicity. In this version of the framework
we chose to focus on supporting a wide class of polices, but not all polices, and preserving good
scalability, minimal performance impact, and a simple abstraction of enforcement. The framework
supports many of the commonly known examples of specific policies and protocols. Specifically, it
supports all policies that are State-independent including both static and dynamic policies. State-
independent policies are those that do not require knowledge of the current state of the group or
messages sent to the group in order to make decisions. State-dependent policies do require such
knowledge. An example of a State-dependent access control policy is one which prohibits one user
from joining while another is a member, or a policy which bases decisions on whether certain mes-
sages have been sent to the group or not. The framework does not support all State-dependent
policies as they require very tight inter-relationships between the particular implementation of a
group system and how the policy is specified.

For example, establishing a protocol where the group-creator defines what the policy should be
is difficult in a distributed group system with no central policy server. The difficulty comes from
several issues:

e Several members may think they are the first member of the group and they will only know
who was actually first after others have already started the joining process. So the system
must be able to go back and redo access control decisions that were already made before the
first member established the policy.

e Any policy defined by the group creator obviously has no way to control who can create
the groups in the first place. Policies restricting who can create groups are needed both for
security reasons and effective resource management. So some other, probably more static,
policy must also be in effect.

e Since all the members of the group participate in establishing the access control they all
must know what the policy should be in case they are the first member of the group. Or
if all processes are not equal and only a few or only one are able to establish the groups,
you lose one of the major advantages of peer-groups as opposed to one-to-many groups. This
complicates the management of access control polices because all members must have current,
accurate policies.

e In partitionable environments, some “meta-policy” must exist to handle the merging of groups
from previously partitioned components. One of the most common ideas to solve this is to
use the oldest policy based on real-life time, but that still has problems with unsynchronized
clocks and changing policies.

The framework supports dynamic policies. The main challenge with such policies is to allow
changes during execution. Since the framework itself does not have any knowledge of the actual
policy, for example it does not cache decisions or restrict what form actual policies take, it is
possible for the access control modules to change how they make decisions independently of server.
The modules need to make sure they activate dynamic changes in a consistent way, by using
synchronized clocks, or by using the group communication services to agree on when to activate
changes.

The framework provides services to ease the implementation of correct dynamic policies. The
most important service is allowing the policy modules to also act as clients of the group messaging
system. They can then use the services of the system such as reliable multicast, ordered messages,
and membership to simplify the handling of dynamic updates. The policies could then use the same
synchronization and fault-tolerance techniques of regular applications. They could use total order
messages to order changes to the policies and use the membership information to handle merging
groups.

The performance cost of our general framework when compared with a custom implementation
of the required authentication methods and access control policy is very small. The only notable
cost is the difference between the overhead of a function call and the overhead of inline code for
access control checks.

3.2 Framework Implementation in Spread

We implemented the framework in the Spread group communication system to give a concrete, real-
world basis for evaluating the usefulness of this general architecture. Although we only implemented
the framework within the Spread system, the model and the interface of the framework are actually
quite general and the set of events upon which access control decisions can be made includes all
of the available actions in a group-based messaging service (join, leave, group send, unicast send,
connect).

3.3 The Spread Group Communication Toolkit

Spread [, I, M) is a local and wide-area messaging infrastructure supporting reliable multicast and
group communication. It provides reliability and ordering of messages (FIFO, causal, total ordering)

and a membership service. The toolkit supports four different semantics: No membership, Closely
Synchronoudl, Extended Virtual Synchrony (EVS) [and View Synchrony (VS) [#].

The system consists of one or more servers and a library linked with the application. The servers
maintain most of the state of the system and provide reliable multicast dissemination, ordering of
messages and the membership services. The library provides an API and basic services for message
oriented applications. The application and the library can run on the same machine as a Spread
server, in which case they communicate over IPC, or on separate machines, in which case the
client-server protocol runs over TCP /IP.

Note that in order to implement our framework, we needed to modify both the Spread client
library and the Spread daemon. When an application implements its own authentication and access
control method, it needs to implement both the client side and the server side modules, however,
it does not need to modify the Spread library or the Spread daemon.

In Spread each member of the group can be both a sender and a receiver. The system is
designed to support small to medium size groups, but can accommodate a large number of different
collaboration sessions, each of which spans the Internet. This is achieved by using unicast messages
over the wide-area network and routing them between Spread nodes on an overlay network. Spread
scales well with the number of groups used by the application without imposing any overhead on
the network routers. Group naming and addressing is not a shared resource (as in IP multicast
addressing), but rather a large space of strings which is unique to a collaboration session.

The Spread toolkit is available publicly and is being used by several organizations for both
research and practical projects. The toolkit supports cross-platform applications and has been
ported to several Unix platforms as well as Windows and Java environments.

3.4 Awuthentication Framework

All clients are authenticated when connecting to a server, and trusted afterwards. Therefore, when
a client attempts actions, such as sending messages or joining groups, no authentication is needed.
However, the attempted user actions are checked against a specified policy which controls which
actions are permitted or denied for that user. This approach explicitly assumes that as long as a
connection to the server is maintained, the same user is authenticated.

Figure M presents the architecture and the process of authentication. Both the client and the
server implement an authentication module.

The change on the client side consists of the addition of a function (see Figure M) that allows an
application to set the authentication protocol it wishes to use and to pass in any necessary data to
that protocol, before connecting to a Spread server. When the function that specifies the request
of a client to connect to a server is called (SP_connect), the connection tries to use the method the
application set to establish a connection.

The authentication method chosen by the application applies to all connections established by
this application (i.e. by this process). If the application wishes to change the authentication method
or data, it must call SP_set_auth method or SP_set_auth methods again. All subsequent connections
established by SP_connect will use the new information. In a multi-threaded application the setting
of new authentication methods or data must be synchronized by the application with any calls to
SP_connect.

A server authentication module needs to implement the functions listed in the auth ops structure
(see Figure i line 10). Then the module should register itself with the Spread daemon by calling
the Acm auth add method function. By default, a module is registered in the ’disabled’ state. The
system administrator can enable the module when configuring Spread.

2This is a relaxed version of EVS for reliable and FIFO messages.

SN

Application

]

| |

%L‘?{ﬂt :| 7. protocol specific auth. medsages > ,SAelrJ\t/f?r |
Module | ! Module| !
|

|

|

|

[

[

I
|
| |
| | |
| 1. SP_set_auth_method| 2. SP_connect | |
Spread Daemon

| \ 6. authenticate | |
[) | 3 UserlD, Library Ver. l :'_.] 6. auth_client_connection
| Spread Client B | 4. available auth. methods | Session

i < 8. Sess_session_report_
[lerary | 5.chosenauth. methods || Layer auth_result
L - - - - - J C——————— _ _ _ _ _ _ _ J

Legend:
— tcp communication
—< call function

Figure 1: Authentication architecture and communication flow

int SP_set_auth_method(const char *auth_name, int (*authenticate) (int, void *), void * auth_data);
int SP_set_auth_methods(int num_methods, const char *auth_name[], int (*authenticate[]) (int, void *), void * auth_data[]);

/* declaration of authenticate function */
int authenticate(int fd, void * user_data_pointer);

Figure 2: Client Authentication Module API

The authentication process operates as follows: when the session layer of the daemon receives a
connection request from a client (this happens when the client calls SP_connect, it first receives some
basic information from the client such as the library version number and the client name. Then,
the server sends to the client a list with all the available authentication methods. The client sends
back to the server the name of the preferred authentication method. If the authentication method
requested by the client is allowed by the server, the session module constructs a session_auth info
structure containing the list of authentication methods which must all complete successfully for
the connection to be considered authenticated. The list of methods is made by including all of the
methods the administrator listed in the RequiredAuthMethods field of the Spread configuration file
as well as whatever method the client selected from the AllowedAuthMethods field. This structure
is passed as a parameter to each authentication function and is used as a handle for the entire
process of authenticating a client. The authentication function can use the module data pointer
to store any module specific data that it needs during authentication. This data pointer is only
valid during a particular instance of the module and will be overwritten as soon as the module
completes authentication. The session module passes control of the connection to each of the listed
authentication modules in the order they were listed, by calling the auth client_connection method
and then “forgets about” the client connection. A minimal state about the client is stored, but no
messages are received or delivered to the client at this point.

The auth_client_connection function is responsible for authenticating the client connection. If
authenticating the client will take a substantial amount of CPU or real time, the function should
not do the work directly, but rather setup a callback function to be called later (for example when

=
WO TR WN -

DO M O B B N R RO B B2 b= e b e
PJIPU A WN RO T WN -

struct session_auth_info {

mailbox mbox;

void *module_data;

int num_required_auths;

int completed_required_auths;

int required_auth_methods [MAX_AUTH_METHODS] ;

int required_auth_results[MAX_AUTH_METHODSI;
};

struct auth_ops {
void (*auth_client_connection) (struct session_auth_info *sess_auth_p);

};

struct acp_ops {

bool (*open_connection) (char *user);

bool (*open_monitor) (char *user); /* not used currently */

bool (*join_group) (char *user, char *group, void *acm_token);

bool (*leave_group) (char *user, char *group, void *acm_token);

bool (*p2p_send) (char *user, char dests[][MAX_GROUP_NAME], int service_type);

bool (*mcast_send) (char *user, char groups[][MAX_GROUP_NAME], int service_type);
b

/* Auth Functions */
bool Acm_auth_add_method(char #*name, struct auth_ops *ops);

/* Access Control Policy Functions */
bool Acm_acp_set_policy(char *policy_name);
bool Acm_acp_add_method(char *name, struct acp_ops *ops);

Figure 3: Server Authentication and Access Control Module API

messages arrive from the client), and then it should return. Another approach is to fork off another
process to handle the authentication. This is required because the daemon is blocked while this
function is running.

The auth client_connection function never returns a decision value because a decision may
not have been reached yet. When a decision has been made the server authentication module calls

Sess_session report_auth result and releases control to the session layer. The Sess_session_report_auth result

function reports whether the current authentication module has successfully authenticated the ses-
sion or not. If more than one authentication method was required, the connection succeeds if all
the methods succeed.

3.5 Access Control Framework

In our model, an authenticated client connection is not automatically allowed to perform any
actions. Each action a client may request of the server, such as sending a message or joining or
leaving a group, is checked at the time it is attempted against an access control policy module. The
enforcement checks are implemented by having the session layer of the server call the appropriate
access control policy module callback function (see Figure W, lines 14-20) return a decision. The
implementation of the check functions should be optimized as they have a direct impact on the
performance of the system as they are called for every client action.

An interesting problem is rejecting actions in asynchronous systems. In asynchronous messaging
systems a client can initiate messages to the system without waiting for any synchronous feedback
indicating that the message was accepted or succeeded in being sent. This is a significant advan-
tage of asynchronous systems as it allows them to pipeline requests and easily overlap messaging
communication time with local computation. However, it prevents giving a client feedback about
a particular event, such as denying that event, by simply returning an error code or having the
“send” function return an error. We note that the way many networking protocols deal with this
situation is to have the next action attempted on the connection return an error indicating some-
thing went wrong with a prior action. This can work when the error causes the entire connection
to be reset (as in most TCP errors) but is very limited when errors are not fatal to the connection
and identifying which application action resulted in the error can be difficult.

In our approach if the module chooses to allow the request, then the server handles it normally.
In the case of rejection, the server creates a special “reject” message which will be sent to the client

in the normal stream of messages. The reject message contains as much of the data included in
the original attempt as possible. The application should be able to identify which message was
rejected by whatever information it stored in the body of the message (such as an application
level sequence number) and respond to it appropriately. That response could be a notification to
the user, establishing a new connection with different authentication credentials and retrying the
request, logging an error, etc.

The server can reject an action at two points, when the server receives the action from the
client or when the action is going to take effect. For example, when a client joins a group the join
can be rejected when the join request is received from the directly connected client, and when the
join request has been sent to all of the servers and has been totally ordered. Rejecting the request
the first time it is seen avoids processing requests that will later be rejected and simplifies the
decision-making because only the server the client is directly connected to will make the decision.
The disadvantage is that at the time the request is being accepted or rejected the module only
knows the current state of the group or system and not what the state will be when the request
would be acted upon by the servers. Since these states can differ, some type of decisions may not
be possible at the early decision point.

4 Case Studies

To provide some intuition as to what building a Spread authentication module requires, this section
discusses the implementation of several real-world modules: an IP based access control module, a
password based authentication module, a SecurID or PAM authentication module, an anonymous
payment authentication and anonymous access control module, and a dynamic peer-group authen-
tication module. In this section, we provide actual implementation code instead of pseudocode to
emphasize the real world simplicity and usability of our framework.

4.1 TIP Access Control

A very simple access control method that does not involve any interaction with the client process or
library, is one that is based on the IP address of the clients. The connection is allowed considering
the TP address from which the client connected to the server. This module only restricts the
open_connection (see Figure ll line 15) operation.

Figure M shows the main code for the module. Note the decision of allowing access or not
is made at line 40. The resulting decision is returned to the daemon by the return value being
ACM_ACCESS_ALLOWED or ACM_ACCESS_DENIED. The check is done against an in memory
list of access rules. For a small number of rules this is reasonable, however, more efficient data
structures and a way to dynamicly reload the rules would be good enhancements in practice.

A configuration file specifies what IP address the system supports. For example, in the con-
figuration file presented in Figure ll UNIX and localhost sockets are supported, along with TCP
connections from IP addresses between 192.168.1.0 and 192.168.1.255, inclusively.

4.2 Password Authentication

A common form of authentication uses some type of password and username to establish the identity
of the user. Many types of password based authentication can be supported by our framework from
passwords sent in the clear (like in telnet) to challenge-response passwords.

In Figuresll Bl and Ml we show how a basic, telnet style, password protocol could be implemented.
This protocol has both a client and a server module and demonstrates how an authentication

© WU WN -

void ip_client_connection(char #*user);

static struct acp_ops IP_ops = {
ip_client_connection,
permit_open_monitor,
permit_join_group,
permit_leave_group,
permit_p2p_send,
permit_mcast_send,

}

struct ip_rule {
int32u network_address;
int prefix_length;
struct ip_rule *next;

}

static struct ip_rule *Allow_Rules;
void ip_init(void)

char file_name[80];
sprintf(file_name, "spread.access_ip");

if (!Acm_acp_add_method("IP", &IP_ops)) {
Alarm(EXIT, "ip_init: Failed to register IP. Too many ACM methods registered.\n");
¥

/* load spread.access_ip file */
. removed code that loads the access_ip file in the Allow_Rules ...

¥
void ip_client_connection(char *user)
{

int32u client_ip, client_net;

struct ip_rule *rule_p;

bool allowed;

int ses;

ses = Sess_get_session(user)
client_ip = Sessions[ses].address;
rule_p = Allow_Rules;
allowed = FALSE;
/* Search allowed lists */
while(rule_p) {
client_net = (client_ip & ((*0x0) << (32 - rule_p->prefix_length)));
if (rule_p->network_address == client_net) {
allowed = TRUE;
break;
¥
rule_p = rule_p->next;
¥
if(allowed)
return (ACM_ACCESS_ALLOWED) ;
else
return (ACM_ACCESS_DENIED) ;

Figure 4: TP Server Authentication Module

protocol can communicate with the client process. Figure ll in lines 50 and 51 and Figure ll in
lines 8 and 9 also show how authentication modules can use the Events subsystem in Spread to
wait for network events to occur and avoid blocking the Spread server while the user is entering
its password or the client and server modules are communicating. Figure ll shows the standard
module setup and some support routines to store a list of usernames and passwords to allow quick
lookups during authentication.

The client module consists of one function which is called during the establishment of a con-
nection and returns either success or failure. The function can use the file descriptor of the socket
over which the connection is being established and whatever data pointer was registered by the
SP_set_auth method. In this case the application prompted the user for a username and password
and created a user_password structure. The authenticate function, sends the username and the
password to the server and waits for a response, informing it of whether or not the authentication
succeeded.

Note that this sample module is shown using blocking “recv” calls in lines 11 and 23 of Figure
B which could cause the entire server process to block if the client did not send all the bytes the

10

DU W N

allow local unix domain socket connections

unix

allow localhost TCP connections

local

allow TCP connections from IP addresses between 192.168.1.0 and 192.168.1.255
192.168.1.0/24

Figure 5: IP Authentication configuration file

server is expecting. This is done for sake of simplicity, a correct implementation would read in non-
blocking mode and store partially received data in a structure linked off the module data pointer in
the session_auth_info structure.

4.3 SecurlD

A popular authentication method is RSA SecurID. The method uses a SecurID server to authen-
ticate a SecurID client based on a unique randomly generated identifier and a PIN. In some cases
the SecurID server might ask the client to provide new credentials. We do not discuss here the
internal of the SecurID authentication mechanism (see [B¥] for more details), but focus on how our
framework can accommodate this method.

The main difference from the previous examples is that in this case the Server Authentication
Module needs to communicate with an external entity, the SecurID server.

In Figure B we present the architecture of a Spread system using SecurID as authentication
mechanism. The Server Authentication Module needs to implement the auth client connection.
As mentioned in Section Ml auth _client_connection should return immediately, and not block.
Blocking can happen when opening a connection with a SecurID server and retrieving messages
from it. Therefore, auth client_connection forks another process responsible for the authentica-
tion protocol and then registers an event such that it will get notified when the forked process
finished. The forked process establishes a connection with the SecurID Server and authenticates
the user. When it finishes, the Server Authentication Module gets notified, so it can call the
Sess_session report_auth result function to inform the Spread daemon that a decision was taken
and to pass control back to it.

4.4 PAM

Another popular method of authentication is the modular PAM [l system which is standard on
Solaris and many Linux systems. Here the authentication module will act as a client to a PAM sys-
tem and request authentication through the standard PAM function calls. To make authentication
through PAM work, the module must provide a way for PAM to communicate and interact with
the actual human user of the system, to prompt for a password or other information. The module
would register an interactivity function with PAM that would pass all of the requests to write
to the user or request input from the user over the Spread communication socket to the Spread
client authentication module for PAM. This client module would then act on the PAM requests
and interact with the user and then send the reply back to the Spread authentication module which
would return the results to the actual PAM function.

4.5 Anonymous Payments

An interesting approach is providing access to anonymous clients in exchange for payment. Systems
such as NetCash [l provide support for transactions between a client and a merchant by means

11

© WU WN -

struct user_password {
char username [MAX_PWORD_USERNAME + 1];
char crypt_pass[MAX_PWORD_CRYPTPASSWORD + 11;
struct user_password *next;
b
static struct auth_ops Pword_ops = {
pword_auth_client_connection,
pword_auth_monitor_connection,
}
static struct user_password *Users;
/* inserts username and password into Users list */
static void insert_user(char *username, char *crypt_password);
/* searches Users list and returns entry */
static bool lockup_ussr(char *username, struct user_password **user_h) ;
static bool check_password(char *username, char *clear_password);
static void auth_client_conn_read(int fd, int dummy, struct session_auth_info *sess_auth_p);
void pword_init(void)
{
char file_name[80];
sprintf (file_name, "spread.access_pword");
if (!Acm_auth_add_method("PWORD", &Pword_ops)) {
Alarm(EXIT, "pword_init: Failed to register PWORD. Too many ACM methods registered.\n");
¥
/* load spread.access_pword file */
. removed code that loads the access_pword file in the Users list ...
¥
static bool check_password(char *username, char *clear_password)
{
struct user_password *user_p;
char *crypt_presented_pass;
char salt[2];
if (lookup_user (username, &user_p)){
memcpy (salt, user_p->crypt_pass, 2);
crypt_presented_pass = crypt(clear_password, salt);
if (!strncmp(crypt_presented_pass, user_p->crypt_pass, 13)) {
return (TRUE) ;
} else { /* password did not match */
return (FALSE) ;
}
} else { /* user not found */
return (FALSE) ;
¥
¥
void puord_auth_client_cormection(struct session_auth_info *sess_auth_p)
{
E_attach_fd(sess_auth_p->mbox, READ_FD, (void (*)(int,int,void *)) auth_client_conn_read, 0, sess_auth_p, LOW_PRIORITY);
E_attach_fd(sess_auth_p->mbox, EXCEPT_FD, (void (*)(int,int,void %)) auth_client_conn_read, 0, sess_auth_p, LOW_PRIORITY);
return;
}

Figure 6: Password Server Authentication Module (support code)

of digital cash. Dedicated servers called currency servers, can issue coins to clients. Later on, this
digital cash can be used in transactions. By using cryptographic techniques, the system provides
anonymity to the client and basic security services. In addition, the system addresses problems
such as ensuring that a client will get a valid receipt for the transaction and guaranteeing that the
money is not double spent. We do not detail the cryptographic details, but show how this method
can be accommodated in our framework.

Our framework can provide access to the system in exchange for payment using an anonymous
payment mechanism. We assume that a client previously obtained some digital coins from a cur-
rency server. When the client wants access to the system the Client Authentication Module imple-
mented in the authenticate function, registered with the Spread library by the SP_set_auth method
function passes the coins over the network connection to the Server Authentication Module. To
protect itself from accepting double-spent money, the Server Authentication Module contacts the
currency server and checks the coins received from the client (if necessary another process will be
forked as in the SecurID case). If the coins are valid, the Server Authenticated Module will generate
a random identifier and register it with the access control policy as a paid user of the appropriate

12

© WU WN -

static void auth_client_conn_read(mailbox mbox, int d, struct session_auth_info *sess_auth_p)
{
char username[MAX_PWORD_USERNAME + 1];
char clear_password[MAX_PWORD_PASSWORD + 1];
int ioctl_cmd, ret;
unsigned char response;
E_detach_fd(mbox, READ_FD);
E_detach_fd(mbox, EXCEPT_FD);
ret = recv(mbox, username, MAX_PWORD_USERNAME, 0);
if(ret < 0) {
Alarm(ACM, "auth_client_conn_read: reading username failed on fd %d\n", mbox);
Sess_session_report_auth_result(sess_auth_p, FALSE);
return;
}
if (ret < MAX_PWORD_USERNAME) {
Alarm(ACM, "auth_client_conn_read: reading username SHORT on fd %d\n", mbox);
Sess_session_report_auth_result(sess_auth_p, FALSE);
return;
}
username [MAX_PWORD_USERNAME] = ’\0’;
ret = recv(mbox, clear_password, MAX_PWORD_PASSWORD, 0);
if(ret < 0) {
Alarm(ACM, "auth_client_conn_read: reading password failed on fd %d\n", mbox);
Sess_session_report_auth_result(sess_auth_p, FALSE);
return;
¥
if (ret < MAX_PWORD_PASSWORD) {
Alarm(ACM, "auth_client_conn_read: reading password SHORT on f£d %d\n", mbox);
Sess_session_report_auth_result(sess_auth_p, FALSE) ;
return;
¥
clear_password [MAX_PWORD_PASSWORD] = ’\0’;
if (check_password (username, clear_password)) {
response = 1;
send(mbox, &response, 1, 0);
Sess_session_report_auth_result(sess_auth_p, TRUE) ;
} else {
response = 0;
send(mbox, &response, 1, 0);
Sess_session_report_auth_result(sess_auth_p, FALSE);
}
return;
¥

Figure 7: Password Server Authentication Module (communication code)

groups. Then, for as long as the payment was valid, the client will be permitted to access the
groups they paid for and the server has no knowledge of the client’s identity.

We note that in case the client gets disconnected, the client might get less service than he
paid for because when the network connection was terminated the binding between connection
and paid user was lost. In order to avoid this, the Server Authentication Module can generate a
random token, together with a random userid and a timestamp and encrypt them and then pass
the encrypted string back to the client. If the client gets disconnected it can present this encrypted
string to the server and the server can decrypt the string and validate that the user is a currently
paid user and give the client access immediately.

4.6 Group-Based Authentication

In all the previous authentication methods presented, the authentication of a client is handled by
the server that the client connects to. In larger, non-homogeneous environments authentication
may involve some or all of the group communication system servers. Although these protocols may
be more complex, they can provide better mappings of administrative domains, and possibly better
scalability.

An example of such a protocol is when a server does not have sufficient knowledge to check
a client’s credentials (for instance a certificate). In this case, it sends the credentials to all the
servers in the configuration and each server then attempts to check the credentials itself and sends

13

© WU WN -

int pword_authenticate(int fd, void *data_p)
{

struct user_password *user_p;

int ret;

char response;

user_p = data_p;

/* Send username and password */
while(((ret = send(fd, user_p->username, MAX_PWORD_USERNAME, 0)) == -1) & ((errno == EINTR) || (errno == EAGAIN)))

if (ret != (MAX_PWORD_USERNAME)) {
printf ("pword_authenticate: unable to send username %d %d: %s\n", ret, MAX_PWORD_USERNAME, strerror(errno));
return(0);

i

while(((ret = send(fd, user_p->password, MAX_PWORD_PASSWORD, 0)) == -1) && ((errno == EINTR) || (errno == EAGAIN)))

H

if (ret != (MAX_PWORD_PASSWORD)) {
printf ("pword_authenticate: unable to send password %d %d: %s\n", ret, MAX_PWORD_PASSWORD, strerror(errmo));
return(0);

¥

/* Receive response code */

ret = recv(fd, &response, 1, 0);

if(ret < 0) {
printf ("pword_authenticate: reading response failed on mailbox %d\n", fd);
return(0);

}

if(ret < 1) {
printf ("pword_authenticate: reading response string SHORT on mailbox %d\n", fd);
return(0);

i

if(response == 1)
return(1);

else
return(0);

Figure 8: Password Client Authentication Module

an answer back. If at least one server succeeds, the client is authenticated. The particularity of
such a protocol is that the servers need to communicate between them as part of the authentication
process. Since all the servers can communicate between them in our system, the framework provides
all necessary features that allows the integration of such a group-based authentication method.

The code demonstrating how this protocol could be implemented in the framework is provided
in Figures lll and B This module utilizes the Events system in Spread, just as the password
module did, to listen for available messages from the network. In this case these messages may not
only come from the client sending their initial credentials, but also from other group authentication
modules communicating through Spread messages, as shown in the function group_auth mcast_read
in Figure Ml When the module is initialized, it connects to the Spread daemon just like an
application client would, using the username “group_auth.mod” and then joins a group called
“auth” with all the other group authentication modules. Two kinds of authentication messages are
sent through Spread. First, creds_msg is sent by the server the client connected to to all of the other
servers. When a server receives a creds_msg, it does a local check to see if it can authenticate the
client with those credentials and sends its answer back to the initial server in a resp_msg. The first
server collects all of the resp_msg messages and when it has received them all it locally computes
the complete decision in the check responses function and notifies the daemon.

4.7 Access Control

We realize that the above case studies are focused on authentication. Few standard access control
protocols that we could use as case studies exist. To demonstrate the ability of the access control
architecture we create a case study about an imaginary secure IRC system. Consider a set of
users where some users are allowed to chat on the intelligence group, while others are restricted to
the operations group. Some are allowed to multicast to a group but are not allowed to read the

14

- L
| Client | l[_ Forked Process]l
I Client I - | SecurlD I
.. 7. protocol specific auth.
| Application Auth. e a * b e Server Module [|
Module {

| | - - - - - - - - — —
| L |
| 1. SP_set_auth_method | 2. SP_connect | [Spread Server 1
| 6. authenticate| | l Daemon |
|) | 3. UsrlD, Library Ver. l > . I 6. auth_client_connection l
| Spread Client B | 4. available auth. methods| Session Server | |

Library D 5 ch . methods | Layer | |8 Sesssessonreport_ | Auth.
|) | 5. chosen auth. methods > auth_result Module
L J | |
Legend: , -

SecurlD Auth.| 7 protocol specific auth. messages

— tcp communication
—< call function
—# parent-child communication

7 3

Server

Figure 9: SecurID Authentication

group messages (virtual drop-box). Our framework supports these access control policies through
appropriate implementation of the join and multicast hooks defined in Figure ll Access control
modules support identity based, role based, or credential based restrictions.

5 Conclusions and Future Work

We presented a flexible implementation of an authentication and access control framework in the
Spread wide area group communication system. Our approach allows an application to write its own
authentication and access control modules, without needing to modify the Spread client or server
code. The flexibility of the system was presented by showing how a wide range of authentication
methods can be implemented in our framework.

There are a lot of open problems that are subject of future work. These include: providing
tools that allow an application to actually specify a policy, handling policies in a system supporting
network partitions (for example merging components with different policies), providing support for
meta-policies defining which entity is allowed to create or modify group policies, and developing
dynamic group trust protocols for authentication.

References

[1] AMIR, Y. Replication using Group Communication over a Partitioned Network. PhD thesis,
Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel, 1995.

[2] AMIR, Y., AWERBUCH, B., DANILOV, C., AND STANTON, J. Flow control for many-to-many
multicast: A cost-benefit approach. Tech. Rep. CNDS-2001-1, Johns Hopkins University,
Center of Networking and Distributed Systems, 2001.

15

© WU WN -

stat

3

stru

L
stru
b
stat
stat

stat

void

¥

stat
{

¥

void

ic struct auth_ops GroupAuth ops = {
group_auth_client_connection,
group_auth_monitor_connection,

ct creds_msg {
mailbox client_mbox;
unsigned char cred[MAX CREDENTIAL_LEN];

ct resp_msg {
mailbox client_mbox;
unsigned char response;

ic mailbox GA_SpreadConnection;
ic char GA_SpreadName[MAX_PRIVATE_NAME];
ic session_auth_info *GA_index[MAX_FD];

group_auth_init (void)

char file_name[80];
sprintf(file_name, "spread.access_pword");

if ('Acm_auth_add_method("GROUP", &GroupAuth_ops)) {
Alarm(EXIT, "group_auth_init: Failed to register GROUP. Too many ACM methods registered.\n");
¥

SP_connect(¢¢4803’’, ‘‘group_auth_mod’’, 1, 1, &GA_SpreadConnection, GA_SpreadName);
SP_join(GA_SpreadConnection, ‘‘auth’’);

E_attach_fd(GA_SpreadConnection, READ_FD, group_auth_mcast_read, 0, NULL, LOW_PRIORITY);
E_attach_fd(GA_SpreadConnection, EXCEPT_FD, group_auth_mcast_read, 0, NULL, LOW_PRIORITY);

ic void group_auth_client_conn_read(mﬂilbox mbox, int dummy, struct session_auth_info *sess_auth_p)

struct creds_msg creds;
int ret,msg_len;

E_detach_fd(mbox, READ_FD);
E_detach_fd(mbox, EXCEPT_FD);

ret = recv(mbox, creds.cred, MAX_CREDENTIAL_LEN, 0);
if(ret < 0) {
Alarm(ACM, "group_auth_client_conn_read: reading creds failed on fd %d\n", mbox);
GA_index[sess_auth_p->mbox] = NULL;
Sess_session_report_auth_result(sess_auth_p, FALSE) ;
return;
¥

/* creds should be validated here before being multicast */

SP_multicast(GA_SpreadConnection, AGREED_MESS, ‘‘auth’’, CRED_MSG, sizeof(creds), creds);
return;

group_auth_client_connection(struct session_auth_info *sess_auth_p)

GA_index[sess_auth_p->mbox] = sess_auth_p;

E_attach_fd(sess_auth_p->mbox, READ_FD, (void (*)(int,int,void *)) group_auth_client_conn_read, O, sess_auth_p, LOW_PRIORITY);
E_attach_fd(sess_auth_p->mbox, EXCEPT_FD, (void (*)(int,int,void %)) group_auth_client_conn_read, 0, sess_auth_p, LOW_PRIORITY);
return;

3]

Figure 10: Group Authentication Module (initialization and client code)

AMIR, Y., DaNiLOV, C., AND STANTON, J. A low latency, loss tolerant architecture and
protocol for wide area group communication. In Proceedings of the International Conference

on Dependable Systems and Networks (June 2000), pp. 327-336.

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. Transis: A communication sub-system
for high availability. Digest of Papers, The 22nd International Symposium on Fault-Tolerant

Computing Systems (1992), 76-84.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL, D., AND CIARFELLA, P.
The Totem single-ring ordering and membership protocol. ACM Transactions on Computer

Systems 13, 4 (November 1995), 311-342.

16

© WU WN -

static void group_auth mcast_read(mailbox mbox, int dummy, void *dummy_p)
{
char sender[MAX_PRIVATE_NAME];
char groups[20] [MAX_GROUP_NAME] ;
char buffer[1000];
int service, num_groups, endian;
int16 mess_type;
unsigned char response;
struct group_auth_info *gauth_info;
struct session_auth_info *sess_auth_p;
struct creds_msg *creds;
struct resp_msg *resp;

assert (mbox = GA_SpreadConnection);
SP_receive (GA_SpreadConnection, &service, sender, 20, &num_groups, groups, &mess_type, &endian, 1000, buffer) ;

if (mess_type == CRED_MSG){
creds = (cred_msg *) buffer;
response = check_creds(creds->cred);
if (!strcmp(sender, GA_SpreadName)) {
sess_auth_p = GA_index[creds->client_mbox];
gauth_info = sess_auth_p->module_data;
gauth_info->response[gauth_info->num_responses] = response;
gauth_info->num_responses++;
} else {
struct resp_msg r;
r.client_mbox = creds->client_mbox;
r.response = response;
SP_multicast (GA_SpreadConnection, RELIABLE_MESS, sender, RESP_MSG, 1, r)
}
return;
¥
if (mess_type == RESP_MSG) {
resp = (resp_msg *) buffer;
sess_auth_p = GA_index[resp->client_mbox];
gauth_info = sess_auth_p->module_data;
gauth_info.responses[gauth_info.num_responses] = resp->response;
gauth_info.num_responses++;

if (gauth_info.num_responses < cur_membership)
return;
if (check_responses(gauth_info->responses)) {
response = 1;
send(sess_auth_p—)mbox, 4response, 1, 0)
GA_index[sess_auth_p->mbox] = NULL;
Sess_session_report_auth_result(sess_auth_p, TRUE);
} else {
response = 0;
send(sess_auth_p->mbox, &response, 1, 0);
GA_index[sess_auth_p->mbox] = NULL;
Sess_session_report_auth_result (sess_auth_p , FALSE);
}

return;

Figure 11: Group Authentication Module (Spread message handler)

[6] AMIR, Y., AND STANTON, J. The Spread wide area group communication system. Tech. Rep.
98-4, Johns Hopkins University, Center of Networking and Distributed Systems, 1998.

[7] BALLARDIE, T. Scalable multicast key distribution. RFC 1949, 1996.

[8] BALLARDIE, T., FrANcIS, P., AND CROWCROFT, J. Core based trees: An architecture
for scalable interdomain multicast routing. In Proceedings of ACM SIGCOMM’93 (1993),
pp- 85-95.

[9] BirmAN, K. P., AND JosEPH, T. Exploiting virtual synchrony in distributed systems. In
11th Annual Symposium on Operating Systems Principles (November 1987), pp. 123-138.

[10] BirMAN, K. P., AND RENESSE, R. V. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, March 1994.

17

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

CARONNI, G., WALDVOGEL, M., SUN, D., WEILER, N., AND PLATTNER, B. The VersaKey
framework: Versatile group key management. IEEE Journal of Selected Areas in Communi-
cation 17, 9 (September 1999).

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. Specifying and using a partitionable group
communication service. In Proceedings of the 16th annual ACM Symposium on Principles of
Distributed Computing (Santa Barbara, CA, August 1997), pp. 53-62.

HarbpjonoO, T., CAIN, B., AND MoONGA, I. Intradomain group key management protocol.
Work in Progress, November 1998.

HARKINS, D., AND DORASWAMY, N. A secure scalable multicast key management protocol
(MKMP). Work in Progress, November 1997.

HARNEY, H., COLEGROVE, A., HARDER, E., METH, U., AND FLEISCHER, R. Group secure
association key management protocol (GSAKMP). draft-irtf-smug-gsakmp-00.txt, November
2000.

HARNEY, H., AND MUCKENHIRN, C. Group key management protocol (GKMP) specification.
RFC 2093, July 1997.

HAyTON, R., HERBERT, A., AND DONALDSON, D. FlexiNet — A flexible component oriented
middleware system. In Proceedings of SIGOPS‘98 (1998).

KiaLstrOM, K. P., MOSER, L. E., AND MELLIAR-SMITH, P. M. The SecureRing protocols
for securing group communication. In Proceedings of the IEEE 31st Hawaii International
Conference on System Sciences (Kona, Hawaii, January 1998), vol. 3, pp. 317-326.

KoHL, J., AND NEUMAN, B. C. The Kerberos Network Authentication Service (Version 5).
RFC-1510, September 1993.

McDANIEL, P., PRAKASH, A., AND HONEYMAN, P. Antigone: A flexible framework for

secure group communication. In Proceedings of the 8th USENIX Security Symposium (August
1999), pp. 99-114.

MEDVINSKY, G., AND NEUMAN, B. C. Netcash: A design for practical electronic currency

on the internet. In Proceedings of First ACM Conference on Computer and Communications
Security (November 1993).

MOSER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND AGARWAL, D. A. Extended virtual
synchrony. In Proceedings of the IEEE 14th International Conference on Distributed Computing
Systems (June 1994), IEEE Computer Society Press, Los Alamitos, CA, pp. 56—65.

NvysTROM, M. The SecurID SASL mechanism. RFC-2808, April 2000.

REITER, M. K. Secure agreement protocols: reliable and atomic group multicast in RAM-
PART. In Proceedings of the 2nd ACM Conference on Computer and Communications Security
(November 1994), ACM, pp. 68-80.

RENESSE, R. V., K.BIRMAN, AND MAFFEIS, S. Horus: A flexible group communication
system. Communications of the ACM 39 (April 1996), 76-83.

18

[26]

[27]

[28]

[29]

RobDEH, O., BIRMAN, K., AND DOLEV, D. The architecture and performance of security
protocols in the Ensemble group communication system. ACM Transactions on Information
and System Security (To appear).

SAMAR, V., AND SCHEMERS, R. Unified login with Pluggable Authentication Modules (PAM).
OSF-RFC 86.0, October 1995.

THOMPSON, M., JOHNSTON, W., MUDUMBAI, S., HoO, G., JACKSON, K., AND ESSIARI, A.
Certificate-based access control for widely distributed resources. In Proceedings of the Eighth
Useniz Security Symposium (August 1999), pp. 215-227.

WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. A high performance totally ordered
multicast protocol. In Theory and Practice in Distributed Systems, International Workshop
(September 1994), Lecture Notes in Computer Science, p. 938.

19

	1 Introduction
	2 Related Work
	3 General System Architecture
	3.1 Why is a General Framework Needed?
	3.2 Framework Implementation in Spread
	3.3 The Spread Group Communication Toolkit
	3.4 Authentication Framework
	3.5 Access Control Framework

	4 Case Studies
	4.1 IP Access Control
	4.2 Password Authentication
	4.3 SecurID
	4.4 PAM
	4.5 Anonymous Payments
	4.6 Group-Based Authentication
	4.7 Access Control

	5 Conclusions and Future Work

