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Abstract

Constructing logical machines out of collections of phgsimachines is a well-known technique for improving
the robustness and fault tolerance of distributed systaifespresent a new, scalable replication architecture, built
upon logical machines specifically designed to perform welvide-area systems spanning multiple sites. The
physical machines in each site implement a logical machjnaubning a local state machine replication protocol,
and a wide-area replication protocol runs among the logiggchines. Implementing logical machines via the state
machine approach affords free substitution of the fauletmhce method used in each site and in the wide-area
replication protocol, allowing one to balance performarared fault tolerance based on perceived risk.

We present a new Byzantine fault-tolerant protocol thaldighes a reliable virtual communication link between
logical machines. Our communication protocol is efficiemtngcessity in wide-area environments), avoiding the
need for redundant message sending during normal-casatperand allowing a logical machine to consume ap-
proximately the same wide-area bandwidth as a single phlsiachine. This dramatically improves the wide-area
performance of our system compared to existing logical nmechased approaches. We implemented a prototype
system and compare its performance and fault toleranceistirgy solutions.

1 Introduction

As network environments become increasingly hostile, evelhprotected distributed information systems, con-
structed with security in mind, are likely to be compromigéi Byzantine fault-tolerant replication (e.qg.,[4, 6,
23, 30]) can be used to construct survivable informationesys that withstand partial compromises. Such systems
are typically deployed in several local-area sites digtgéd across a wide-area network. Practical solutions dhoul
have two fundamental characteristics. First, they museserhigh performance in large-scale deployments, which
requires the efficient use of limited wide-area inter-saadwidth. Second, they must offer customizability, beeaus
heterogeneous sites have different risk profiles resuftiig varied physical security, hardware, and performance
requirements. To the best of our knowledge, no previousaafdn architecture simultaneously provides these two
properties.

This paper presents the first scalable wide-area replitatistem that (1) achieves high performance through the
efficient use of wide-area bandwidth and (2) allows custation of the fault tolerance approach used within and
among the local-area sites. Our architecture uses therstatieine (SM) approach [17, 32] to transform the physical
machines in each site intolagical maching(LM), and the logical machines run a wide-area protocol.ngghe
state machine approach to build logical machines is a wadia technique for cleanly separating the protocol used
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to implement the logical machine from the protocol runningtop of it. Representative systems include Voltan
[5], Immune [26], BASE [30], Starfish [15], and Thema [24], iatinare described in more detail in Section 2. The
state machine approach affords free substitution of thi falerance method used in each site and in the wide-
area replication protocol, allowing a Byzantine or benigulf-tolerant protocol to be selected depending on system
requirements and perceived risks.

All previous Byzantine fault-tolerant SM-based logicalehime abstractions send messages redundantly in order
to guarantee reliable communication in the presence oftinak protocol participants. Typically, to prevent mali-
cious servers from blocking the message transmissionast fe+ 1 servers in the sending LM will each send to
f + 1 servers in the receiving LM, whergis the number of potential faults in each LMVnhile this strategy works
well on local-area networks, where bandwidth is plentifuls impractical for replication systems that must send
many messages over wide-area links. In our experiencewitlis-area bandwidth and not computational constraints
that limits the performance of well-engineered wide-aegaication systems. To address this weakness, we present
BLink, the first Byzantine fault-tolerant communicatiorofircol that guarantees efficient wide-area communication
between logical machines. BLink is specifically designeduise in systems where (1) the physical machines com-
prising an LM are located in a LAN that provides low-latentigh-bandwidth communication, and (2) the LMs are
located in different LANS, and are connected by high-lagetow-bandwidth links. BLink usually requires only one
physical message to be sent over the wide-area network ébrraassage sent by the logical machine.

Our previous wide-area replication architecture, Stevidldshares some similarities with our new architecture.
Both systems use a hierarchical logical machine architecnd provide high performance by efficiently utilizing
wide-area bandwidth. However, they use fundamentallyedsfit techniques to construct their logical machines.
The servers comprising each LM in our new architecture ljotalder all events that cause a state transition in the
protocol running on top of them (i.e., updates, acknowleuggs, and wide-area timeouts), and execute these events
in the same order. This is in striking contrast to the apgdrdaken in Steward, where the wide-area protocol makes
state transitions based on unordered events. As a resBiteward, the protocols running within the sites and those
running among the sites are interdependent and cannot beaseph Consequently, the fault tolerance approach
within and among the sites cannot be customized. Since 8lawas a benign fault-tolerant wide-area protocaol, it
cannot survive a site compromise. We describe preciselythdpteward architecture is inflexible and inherently a
poor match for diverse wide-area environments requirirggaizability in Section 2.

To mitigate the high cost of the additional ordering requiitey the state machine approach, we use two op-
timizations. First, we amortize the computational cossoeamted with digital signatures within the LM ordering
protocol using known aggregation techniques. Second, wmdstrate the first use of a Merkle tree [25] mechanism
to amortize the cost of threshold signatures while prodyeirself-contained, threshold-signed wide-area message.
Amortizing optimizations enable an LM to process and sendhenorder of a thousand wide-area messages per
second, preventing LM throughput from limiting overall figmance. State machine based LMs augmented with
BLink and the Merkle tree optimization have precisely thegssary properties to build a customizable fault-tolerant
replication system without sacrificing performance.

The contributions of this work are:

1. It presents a new hierarchical replication architectarevide-area networks that combines high performance
and customizability of the fault tolerance approach usethiwieach site and among the sites. Using a
Byzantine fault-tolerant protocol on the wide area prateagainst site compromises and offers fundamen-
tally stronger security guarantees than our previous Byste

2. It presents a new Byzantine fault-tolerant protocol, i, ithat guarantees efficient wide-area communication
between logical machines, each of which is constructed Bewmeral non-trusted entities, such that messages
usually require one send over the wide-area network. ThefuBeink increases performance by over an order
of magnitude in comparison to an SM-based logical machinogeh that uses previous communication
protocols, which require at leadf + 1, and typically(f + 1)2, redundant sends.

It may be possible to use a peer-based protocol in which efezfi ¢ 1 servers sends to a unique peer. To the best of our knowledge, n
existing system uses this method, except for Steward [4i;iwinses it sparingly to send global view change messages.



3. It shows that by using optimizations that amortize the poiational cost of the logical machine ordering, the
new system achieves high performance, outperforming thee8t system by 4 times.

We compare four possible compositions of the architectpites the Steward architecture, over emulated wide-
area networks. The experiments show that the composaliigeataire that runs a wide-area benign fault-tolerant
protocol and Byzantine local-area protocols within eatd sas performance that is 4 fold better than the original
Steward architecture, which was the previous state of thé&ar new architecture achieves 12 percent lower perfor-
mance than a new version of Steward that we developed for @asom that uses similar amortizing optimizations.
This performance difference is the cost of providing clegpesation and customizability. A Byzantine over Byzan-
tine composition, which is not possible in Steward and mtesifundamentally stronger fault tolerance, performs 3
times better than the original Steward, and within 35 pdroéSteward with amortizing optimizations.

The remainder of this paper is presented as follows. In @@ we provide background on state machine
replication and the fault-tolerant protocols used by owstamizable architecture. Section 3 describes our system
model and service guarantees. In Section 4, we describeystens architecture. Section 5 presents the BLink
protocol, and Section 6 describes our performance opttinizm In Section 7, we evaluate the performance of our
architecture. In Section 8 we provide a proof sketch fortgafed liveness. Section 9 provides discussion, and
Section 10 concludes the paper.

2 Background and Related Work

Our work uses techniques from fault-tolerant replicatioryptography, and Byzantine fault-tolerant protocols
and architectures. In this section, we describe relatedt wmrst relevant to our new architecture.

State Machine Replication: Lamport [17] and Schneider [32] introduced and populargiate machine replica-
tion, where deterministic replicas execute a totally cedestream of events that cause state transitions. Therefore
all replicas proceed through exactly the same states. &tlimique can be used to implement replicated information
access systems, databases, and other services.

The state machine approach has been used in many systemsstoucbfault-tolerant logical machines out of
collections of physical machines. Schlichting and Scherejdl] discuss the implementation and use of k-fail-stop
processors, which are composed of several potentially Bymaprocessors. Benign fault-tolerant protocols safely
run on top of these fail-stop processors even in the pressinBgzantine faults. The Voltan system of Brasileiro,
et al. [5] uses the state machine approach to construct taeepsor fail-silent nodes that either work correctly or
become silent if an internal failure of one of the processedetected. The FTS system of Friedman and Hadad
[12] uses active replication to construct a lightweightlfdaolerance service for CORBA. The Immune system of
Narasimhan et al. [26] replicates objects in CORBA applicet, allowing the applications to continue operating
despite Byzantine behavior. The Starfish system of Kihistemd Narasimhan [15] builds an intrusion-tolerant
middleware service by using a hierarchical membershigitra and end-to-end intrusion detection. Both Immune
and Starfish use an underlying group communication systeh as SecureRing [14]. The Thema system of
Merideth, et al. [24] uses state machine replication todoByzantine fault-tolerant Web Services.

Paxosand BFT: Paxos [16, 18] is a fault-tolerant protocol that enablesoaigiof distributed servers, exchanging
messages via asynchronous communication, to totally aiagt requests in a benign fault, crash-recovery model
(enabling state machine replication). Paxos uses a leadeotdinate an agreement protocol. If the leader fails, the
other servers elect a new leader, which coordinates sufioeonciliation so that progress can safely continue. In
the normal case, when the leader does not fail, Paxos reguitecommunication rounds to order a message, one of
which is an all-to-all message exchange. Paxos continuaslér client updates if at leagt+ 1 out of2f + 1 servers
are connected and functioning correctly. BFT [6] also tgtatders client requests, similar to Paxos. However, it
tolerates Byzantine faults, where compromised serveravgemmaliciously in an attempt to disrupt the system. BFT
uses three communication rounds, two of which are allfoaassage exchanges. It can survivByzantine server
failures out of a total o8 f + 1. BASE [30] describes an abstraction that is built upon BFT giwes examples of
how to use this abstraction to build Byzantine fault-toléraervices. We use a similar abstraction to convert the
servers in one site into a logical machine.



Steward: Steward [4] is a hierarchical state machine replicatiomiggcture for wide-area networks. It converts
a group of servers in a site into a logical entity that playss rible of a single participant in a wide-area protocol.
However, it does not use state machine replication to ctegieal machines. The servers within a site pass incoming
wide-area messages directly to the upper-level wide-amaagl, without ordering them within the sitd-or most
messages, this eliminates the overhead associated wigmBiye fault-tolerant agreement (Byzantine agreement is
used only to assign a sequence number to client updates)rideeof this optimization is the need for customized
protocols specifically designed to overcome the temportaite slivergence with respect to the lower-level protocols.
Steward has over ten specialized protocols that run withiheanong the sites. Most of these protocols are associated
with global view changes, during which a new leader siteesteld. Since the servers comprising a Steward LM do
not proceed through the same sequence of states, they musgiecial protocols to agree on the content of outgoing
wide-area messages. For example, when a site needs to semaray of its knowledge, it runs thHEONSTRUCTF
GLOBAL-CONSTRAINT protocol so that (1) the servers can agree on a common stdt@gathey can invoke the
THRESHOLD-SIGN protocol on the same message. Other wide-area messages s&parate protocols. Note that
the servers do not exhibit state divergence with respetidgkobal state machine replication service. Steward can
withstandf out of 3f + 1 Byzantine failures within each site but cannot survive ewasingle site compromise.

Other Byzantine Fault-tolerant Protocols: Yin et al. [35] describe a Byzantine fault-tolerant reptioa archi-
tecture that separates the agreement component that oedgiessts from the execution component that processes
them. Their architecture reduces the number of storagecasplo2f + 1 and provides a privacy firewall, which
prevents a compromised server from divulging sensitiverinftion. Martin and Alvisi [23] recently introduced a
two-round Byzantine consensus algorithm, which usés- 1 servers to overcomé faults.

Quorum systems obtain Byzantine fault tolerance by apglgjnorum replication methods [19]. Examples of
such systems include Phalanx [22], and Fleet [20, 21]. Thepktfpocol [9] combines the use of quorum replica-
tion with Byzantine fault-tolerant agreement, using a niaetweight quorum-based protocol during normal-case
operation and BFT to resolve contention when it arises. Addated to our work are group communication sys-
tems resilient to Byzantine failures [10, 14, 27, 28]. V&nso et al. propose a hybrid approach [8, 34], where
synchronous, trusted nodes provide strong global timiragantees.

3 System Model and Service Guarantees

Servers are organized into wide-aigtes each site has a unique identifier. Each server belongs tsitenand
has a unique identifier within that site. The network mayipartinto multiple disjointcomponentseach containing
one or more sites. During a partition, servers from sitesiffiergnt components are unable to communicate with
each other. Components may subsequently re-merge. We eanstiste transfer mechanism (as in [7]) or an update
reconciliation mechanism (as in [3]) to reconcile statdsrad remerge. The number of servers within each site
varies with the desired level of fault tolerance within tite.slf a benign fault-tolerant protocol is deployed withgin
site, then we assume there are at I@gst 1 servers within the site, whergis the maximum number of servers that
may be faulty. If a Byzantine fault-tolerant protocol is tgmd, then we assume there are at 1835t 1 servers
within the site, where at mogtservers may be Byzantine.

The free substitution property afforded by using SM-baseithl machines allows our architecture to support a
rich configuration space. Each site can employ either a Bymaor a benign fault-tolerant SM replication protocol
to implement its LM. Further, by running a Byzantine fauterant wide-area protocol among LMs, our system can
guarantee consistency even when the fault assumptionswitiiie some of the sites are violated. We say that a site
is Byzantine if (1) it is running a local benign fault-toletgprotocol and at least one server is Byzantine or (2) it is
running a local Byzantine fault-tolerant protocol and mitvan f servers are Byzantine. The number of sites needed
in this case is dependent on the wide-area protocol choideyitl be at least3F + 1, whereF' is the maximum
number ofsitesthat may be Byzantine.

Clients introduce updates into the system by communicatiity the servers in their local site. Each update
is uniquely identified by a pair consisting of the identifidrtioe client that generated the update and a unique,
monotonically increasing sequence number. We say thateatgroposesan update when the client sends the
update to a correct server in the local site, and the cormrgesreceives it. Clients propose updates sequentially:
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a client, ¢, may propose an update with sequence nunmber 1 only after it receives a reply for an update with
sequence numbey. Clients may be faulty; updates from faulty clients will beplicated consistently. Access
control techniques can be used to restrict the impact ofyfalients.

We employ digital signatures, and we make use of a crypttigamash function to compute message digests.
We assume that all adversaries, including faulty serveesc@mputationally bounded such that they cannot subvert
these cryptographic mechanisms. When Byzantine faultaot® is deployed within a site, the servers in that site
use an f + 1, 3f + 1) threshold digital signature scheme [33]. Each site hasfiqppkey, and each server receives
a share with the corresponding proof that can be used to daratethe validity of the server’s partial signatures.
We assume that threshold signatures are unforgeable withowing f/ + 1 or more shares.

Our system achieves replication via the state machine appr@stablishing a global, total order on client updates
in the wide-area protocol. Each server executes an upd#tegglebal sequence numbéwhen it applies the update
to its state machine. A server executes updatdy after having executed all updates with a lower sequenceber.

Our replication system provides the following two safetpditions:

DEFINITION 3.1 S1 - Q\FETY: If two correct servers execute ti#é update, then these updates are identical.
DEFINITION 3.2 S2 - \ALIDITY: Only an update that was proposed by a client may be executed.

Since no asynchronous, fault-tolerant replication proté@erating even one failure can always be both safe and
live [11], we provide liveness under certain synchrony dtimas. We define the following terminology and then
specify our liveness guarantee:

e Two servers are connected a client and server are connecté@dany message that is sent between them will
arrive in a bounded time. The protocol participants needknotv this bound beforehand.

e Two sites are connectédflevery correct server in one site is connected to everyeobserver in the other.
e Aclientis connected to a sitkit can communicate with all correct servers in that site.

e A site is stablewith respect to timd’ if there exists a sefy, of ¢ servers within the site (with=2f + 1 for
sites tolerant to Byzantine failures and= f + 1 for sites tolerant to benign failures), where, for all timé&s
> T, the members of are (1) correct and (2) connected. We call the membefsatble servers

e Let NV be the total number of sites in the system dnhtle the maximum number of sites that may be faulty.
Thesystem is stableith respect to tim&’ if there exists a set}/, of r wide-area sites (with > | N/2] when
sites may exhibit benign failures and= 2F + 1 when sites may be Byzantine) where, for all timé&s> T,
the sites inlV are (1) stable with respect o and (2) connected. We call the siteslihthe stable sites

DEFINITION 3.3 L1 - GLoBAL LIVENESS If the system is stable with respect to tiffiethen if, after timel’, a
stable server receives an update which it has not execuied,that update will eventually be executed.

4 System Architecture

In our composable architecture, the physical machinesah sige implement dbgical machinddy running a local
state machine replication protocol [17, 32]. We then ruragesinachine replication protocol on top of these logical
machines, among the sites. Using SM-based logical machirmsestablished technique for cleanly separating the
implementation of the LM from the protocol running on top ©f@ur architecture leverages the flexibility afforded
by this technique, allowing one to customize the protocal type of fault tolerance desired, both within each LM
and among the LMs. Further, we can use the known safety poyahé wide-area protocol (when run among
single machines), together with one for the local state macteplication protocol, to trivially prove safety for the
composition. The liveness proof is more complicated, butimgimpler than what is necessary when the wide-area
and local-area protocols are interdependent. See SecfimnaBmore formal discussion of the safety and liveness
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properties. In the remainder of this section, we first reviemwv we use the state machine approach to build our
logical machines, and then present several compositionsradrchitecture.

Implementing L ogical Machines. The wide-area replication protocol running on top of our LiMas just as
it would if it were run among a group of single machines, eadated in its own site. Each LM sends the same
types of wide-area messages and makes the same statedrsnag would a single machine running the wide-area
replication protocol. To support this abstraction, thegit®l machines in each site use an agreement protocol to
totally order all events (messages and timeouts) that catase transitions in the wide-area protocol. The physical
machines then execute the events in the agreed upon ordes, flie LM conceptually executes a single stream of
wide-area protocol events. The LMs communicate using Blankvoid sending redundant wide-area messages.

The SM approach assumes that all events are determinissi@a rAsult, we must prevent the physical machines
from diverging in response to non-deterministic events. éample, although the physical machines within a site
may fire a local timeout asynchronously, they must not achertimeout until its order is agreed upon. We use a
technique similar to BASE [30] to handle non-determinigtients. To implement an LM timeout when a Byzantine
fault-tolerant agreement protocol is used, each servdrarsite sets a local timer, and when this timer expires, it
sends a signed message to the leader of the agreement jrdtoedeader waits foif + 1 signed messages proving
that the timer expired at at least one correct server anddiuers a logical timeout message (containing this proof).

Outgoing wide-area messages carry an RSA signature [29%n\&thogical machine is implemented with a benign
fault-tolerant protocol, the message carries a standafldRfhature. When running a Byzantine fault-tolerant local
protocol, the physical machines within the site generatB&A threshold signature, attesting to the fact that 1
servers agreed on the message. This prevents maliciowersevithin a site from forging a message. Moreover,
outgoing messsages carry only a single RSA (thresholdpgige, saving wide-area bandwidth. Our architecture
amortizes the high cost of threshold cryptography over n@artgoing messages. We use a technique similar to
Steward to prevent malicious servers from disrupting thestold signature protocol.

Protocol Compositions: The free substitution property of our architecture makextéensible, allowing one to
use any of several existing state of the art replicationqmais, both within each site and on the wide area. In this
paper, we focus on four compositions of our architectur@gusvo well-known, flat replication protocols: Paxos
[16, 18] as our benign fault-tolerant protocol, and BFT [§pair Byzantine fault-tolerant replication protocol. When
BFT is used within a site to implement an LM, the LM will funati correctly if less than one third of the servers in
the site are compromised. When BFT is run on the wide areaygtem will function correctly if less than one third
of the sites are compromised. When Paxos is run within athige, M will function correctly if less than a majority
of servers suffer benign faults. When Paxos is run on the waida, the system will function correctly if less than
a majority of sites suffer benign failures. We refer to cosipons aswide-area protocdlocal-area protocal For
example, we refer to a composition which runs BFT on the wida and Paxos on the local area as BFT/Paxos.

We conclude by providing an example of Paxos/BFT that trélcedlow of a client update through the system
during normal-case operation. First, a client sends antafgdaa server in its own site, which forwards the update to
the leader site (i.e., the site coordinating the Paxos w&rée-protocol). The leader site LM uses BFT (requiring three
local communication rounds), to locally order the messagatcorresponding to the reception of the update by the
LM. The LM generates a wide-area proposal message, bindifapbal sequence number to the update. The message
is then threshold signed via a one-round protocol. The lloldssigned proposal is then sent (using BLink) to the
other sites. Each non-leader LM orders the incoming prdpgsamerates an acknowledgement (accept) message
for the proposal, and then sends the acknowledgement (Bdiimk) to the other LMs. Each LM then orders the
reception of the accept message. When the proposal and dtgnajaccepts are collected, the LM globally orders
the client update, completing the protocol. We observettieprotocol consists of many rounds, most of which are
associated with ordering incoming messages; this is tloe ppoi achieve protocol separation.

5 BLink: Byzantine-resilient Communication
To achieve high performance over the low-bandwidth linkarahteristic of wide-area networks, our architecture

requires an efficient mechanism for passing messages hetogieal machines. As described in Section 4, each
LM is implemented by a replicated group of physical machisesne of which may be faulty. Faulty servers may

6



fail to send, receive, and/or disseminate wide-area messdxisting protocols that use state machine based logical
machines (e.g., [5, 24, 26]) overcome this problem by redaotig sending all messages between logical machines.
For example, in a system toleratirnfgfaults, each off + 1 servers in the sending LM might send the outgoing
message tg + 1 servers in the receiving LM. While this overhead may be a#e in high-bandwidth LANs

or systems supporting a small number of faults, the appréaceaven one withO( f) overhead) is poorly suited to
large-scale wide-area deployments.

Steward [4] avoids sending redundant messages during hoesa operation by choosing one server (the site
representative) to send outgoing messages. Steward esmplogarse-grained mechanism to monitor the perfor-
mance of the representative, using a lack of global prodeesiginal that the representatineaybe acting faulty and
should be replaced. This approach has two undesired camseegl timeouts for detecting faulty behavior can be
significantly higher than they need to be, and the commupitgtrotocol is (1) not generic and (2) tightly coupled
with global and local protocols, making it unusable in oustomizable architecture.

In this section we present tigyzantine Linkprotocol (BLink), a new Byzantine fault-tolerant prototioét allows
logical machines to efficiently communicate with each othear the wide-area network, regardless of the protocols
they are running. BLink consists of four sub-protocols, each tailored to thaltf tolerance method employed
in the sending and receiving LMs: (benign, benign), (Byzentbenign), (benign, Byzantine), and (Byzantine,
Byzantine). We first focus on the most challenging case, &/kach LM runs a Byzantine fault-tolerant protocol.
We then describe the other sub-protocols.

BLink establishes a reliable communication link between tviMs using three techniques. The first technique
provides a novel way of delegating the responsibility fodevarea communication such that (1) messages are
normally sent only once and (2) the adversary is unable teateplly block communication between two logical
machines. The second technique leverages the power ohtidesryptography and state machine replication to
allow the servers in the sending LM to monitor the behavidheflink and take action if it appears to be faulty. The
third technigue ensures fairness by preventing the adyefisan starving any particular link.

5.1 Delegating Communication Responsibility

BLink constructs a set dbgical links from each LM to its neighboring LMs. These logical links aediable,
masking faulty behavior at both the sending and receivingsLWb support this abstraction, BLink defines a set of
virtual links, each consisting of one server (foewarder) from the sending LM and one server (theel) from the
receiving LM. The servers on a virtual link form a (forwardpeer) pair. The forwarder sends outgoing wide-area
messages to the peer, and the peer disseminates incomisggaedo the other servers in the receiving LM.

For each outgoing logical link, the sending LM delegates mamication responsibility to the forwarder of one
of its virtual links. This decision is made independently éach outgoing logical link; different servers may act as
forwarder on different logial links, and the same server metyas forwarder on multiple logical links. Since either
the forwarder or the peer may be faulty, the other serversinvthe sending LM monitor the performance of the
virtual link and move to the next virtual link (electing thext forwarder) if the current forwarder is not performing
well enough on the given link (we define this notion more @elyi below).

The virtual links are constructed as follows, for two lodicgachinesL. M 4 andLMpg. Supposd.M 4 has3F 4 +1
servers, and. Mp has3Fp + 1 servers, withF'y > Fp. We construct = LCM (3F4 + 1,3Fp + 1) virtual links,
labeled O throughy — 1. Virtual link 7 consists of the server ihM 4 with server idi mod (3F4 + 1) and the server
in LM p with server idi mod (3Fp + 1). The LM moves through the virtual links sequentially, wreggparound
modulov. We use the least common multiple3# 4 + 1 and3Fp + 1 so that at each site each server is used in the
same number of virtual links. This prevents the adversamnffoverbenefiting” in its fault allocation by making the
faulty servers participate in more virtual links than thereot servers. The BLink logical link is shown in Figure 1.

WhenF4 = Fp, itis easy to see (by an extension of the pigeonhole priegiplat, out o3 F4 + 1 virtual links,
our matching guarantees the existence of at [Bgast 1 correct virtual links, where both the forwarder and the peer
are correct (see Figure 2). Whéf, > Fjp, the following proof sketch shows that at ledag8 of the virtual links

>The term “link” refers to the logical communication link abtished between LMs. In particular, BLink operates ovelfUD
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Figure 1: Alogical link is constructed from LCM§E4+1, 3Fs+1) Sending Receiving
virtual links. Each virtual link consists of a forwarder aacpeer. LM LM

At any time, one virtual link is used to send messages on tliedb  Figure 2: WhenFy = Fz, any set o8F4 + 1 virtual links has at
link. Avirtual link that is diagnosed as potentially faulgreplaced.  leastF4 + 1 virtual links with both forwarder and peer correct.

are correct. Each server In\/ 4 is a member of/(3F4 + 1) virtual links, and each server i) is a member of
v/(3Fp + 1) virtual links. Letb equal the number of faulty links. Then we have:

U U
b < FASFA-H + Fp 3Fp+1
3FA+1 3Fp+1
Fa 4 i)v
3F5

A

Thus, at least /3 of the virtual links are correct.

In addition to the ratio of correct virtual links, we also siter the worst-case humber of virtual links through
which the sending LM must cycle before reaching a correét IWe refer to this value a§',,,,. We first present
the equation fo”,,,,, and then explain how the equation is derived:

Fy
¢ = L2FB+1J
L = FB+FAmOd(2FB+1)
Crmaz = G*(3Fg+1)+L+1 1)

Intuitively, in each group o8 Fp + 1 links, the adversary can ugg; servers fromL M p and must consume at least
2Fp + 1 servers fromL M 4 (otherwise we will have reached a correct link). Thlug/4 may need to cycle through
G = | 372 ) complete groups dF + 1 virtual links. The last group d8F + 1 (called L in the formula above)
can containf’g servers fromL Mg, plus the remaining faulty servers, if any, frabd/ 4.

We now show the following bound aoff,,,:

Crmae < 1.5F4 —0.5(F4 mod (2Fp +1)) + Fp + 1 2

We begin by removing the floor from the first term in Equation 1:

F
Crmaz < LiAJ(.gFB‘Fl)—FFB—I—FAmod(2F3+1)+1
2Fg +1
Fa Famod (2Fp + 1))
- - 3Fg +1)+ Fg + Famod (2Fg +1) +1
(2F3+1 2Fp + 1 (3Fp+1)+ Fp+ Famod (2Fp + 1) +

Fy FAmOd(2F3+1)
= A (3Fp+1)—
[ (3Fp +1) 2Fp + 1

(3FB—|—1)—|—FB—|—FAmod(2F3+1)+1 3)
2Fp +

We now rewrite the bound in Equation 2 in a way that will helgbocidate how the bound is derived:

Crmar < 15F4 —15(F4 mod (2Fp+1))+ Fp+ Famod (2Fp +1)+1 (4)

Comparing Equation 3 and Equation 4, we see that the lag terens appear in both equations. Thus, we can ignore
them for the time being and focus on proving the followingimediate result:
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Fymod (2Fp + 1)
2Fp +1

F
4 -(3Fp +1) - (3Fp+1) < 1.5F4 — 1.5(F4 mod (2Fp + 1)) (5)

2Fp +
Rewriting the left side of Equation 5, we wish to show:

Fy — Fpmod (2Fp + 1)

Fg+1
(3Fp +1) 2Fp + 1

< 1.5F4 — 1.5(F4 mod (2Fp + 1)) (6)

We now consider the three possible cases for the relatipm&tiveent’y and2Fg + 1. First, if F'4 < 2Fg + 1, then

modular arithmetic implies thafy mod (2Fp+1) = F4. Thus, in this case, Equation 6 is an equality. Substituting
we obtain:

(3Fp + 1)FA—FA2?21(12FB+1) = (3Fg + 1)1;%;3
=0
= 15F4 —15Fy

= 1.5F4 — 1.5(F4 mod (2Fp + 1))

We now consider the second case.Flf is a multiple of2Fz + 1, then F4 mod (2F + 1) = 0. In this case,
substitution reveals that the left side of Equation 6 iHiriless than the right side:

Fa—F4 mod (2Fp+1 _
(3Fp + 1)~ Az?;r(l 2D = (3Fp + 1)2%?9+01
3FB+1F
2Fp+1+1 A
< 15Fy
= 15F4y —1.5%0

1.5F4 — 1.5(F4 mod (2Fp + 1))

The third step holds becau%%—j:} is bounded above by 1.5.

Finally, we consider the third case. My > 2Fp + 1 but not a multiple o2F5 + 1, thenF4 mod (2Fp + 1)
produces a value in the open intery@l 2F'5 + 1), which must be less thaF,. In this case, the left side of Equation
6 is strictly less than the right side:

FA—FAmOd(QFB—I-l) 3Fp+1
3Fp + 1 = 2B (P, — Fymod (2F5 + 1
(3F5 +1) 2Fp + 1 2FB+1(A amod (2Fp +1))

< 1.5(F4 — Fq4mod (2Fp + 1))

The last step holds becaudg2t; < 1.5 and(F4 — F4 mod (2Fp + 1)) is positive.
Thus, we have shown that Equation 6 (and, therefore, Equadidiolds in all cases. Since all other terms are
identical in Equations 3 and 4, we have shown the following:

Crae < 3pA=(3Fp +1) — LAl Clp+D 3, 4 1) + Fip + Fy mod (2Fp +1) + 1
< 1.5FA—1.5(FAmod(2F3+1))+FB+FAmOd(2FB+1)+1

Combining terms, we obtain the following, which matches &mn 2 and completes the proof:
Cmaz < 15F4—05(F4mod (2Fp+1))+ Fp+1

We now provide the reader with an intuitive feel for the relaship betweer(,,,, (Equation 1) and its bound
(Equation 2) by summarizing actual values gy,... over a wide range of possible configurations. For configoinati
in which F'4 and Fg can vary from 1 to 1000, witlk’y > Fg, the minimum, maximum, and average values for
Cinaz are(1.334F4 + 1), (2.0F4 + 1), and(1.704F4 + 1), respectively.



5.2 Reliability and Monitoring

BLink uses threshold-signed, cumulative acknowledgemtmensure reliability. Each message sent on an out-
going logical link is assigned a link-specific sequence nemissigning these sequence numbers consistently is
simple, since outgoing messages are generated in respomgEnts totally-ordered by the LM and can be sequenced
using this total order. Each LM periodically generates aghold-signed acknowledgement message, which con-
tains, for each logical link, the sequence number througtthvthe LM has received all previous messages. The
generation of the acknowledgement is triggered by exegwim LM timeout, as described in Section 4. Servers
could also piggy-back acknowledgements on regular outgoiessages for more timely, fine-grained feedback.
The peer server for each incoming logical link sends the asledgement to its corresponding forwarder, which
presents the acknowledgement to the servers in the sentiing L

The acknowledgement serves two purposes. First, it is useetermine which messages need to be retrans-
mitted over the link to achieve reliability. This relialiyliis guaranteed even if the current forwarder is replaced,
since the next forwarder knows exactly which messages reoraicknowledged and should be resent. Second, the
servers in the sending LM use the acknowledgement to eeatbat performance of the current forwarder. Each
server in the sending LM maintains a queue of the unackn@eltdnessages on each logical link, placing an LM
timeout on the acknowledgement of the first message in thaequk, before the timeout expires, the forwarder
presents an acknowledgement indicating the message waesstudly received by the receiving LM, the timeout is
canceled and a new timeout is set on the next message in the.qdewever, if the timeout expires before such an
acknowledgement is received, the servers in the sendinguddext that the virtual link is faulty and elect the next
forwarder. Note that this mechanism can be augmented toanéohigher throughput of acknowledged messages
by placing a timeout on a batch of messages. Of course, Bloek dot guarantee delivery when a site at one or
both ends of the logical link is Byzantine.

5.3 Fairness

The third technique used by the BLink protocol addressesi¢épendency between the evaluation of the virtual
link forwarder and the performance of the leader of the ages# protocol in the receiving LM. Intuitively, if the
leader in the receiving LM could selectively refuse to ordertain messages or could delay them too long, then a
correct forwarder (in the sending LM) might not be able tdexilan acknowledgement in time to convince the other
servers that it sent the messages correctly. We would likettte on a correct virtual link to the extent possible, and
thus we augment the agreement protocol with a fairness mescha

When a peer in a receiving LM receives an incoming messagisseminates the message within the site; all
servers then expect the leader of the agreement protocaitiaté the message for ordering such that it can be
executed by the LM. To ensure fairness, servers must plaireeaut on the leader of the agreement protocol to
prevent the selective starvation of a particular incomiogidal link. Servers within the LM maintain a queue
for each incoming logical link. When the leader receives @&sage to be ordered, it places the message on the
appropriate queue. The leader then attempts to order nesssdigof the queues in round-robin fashion. Since
incoming link messages have link-based sequence numlilessnaers know exactly which message should be the
next one ordered for each link. Thus, upon receiving the medsage on a link, a server places a timeout on the
message and attempts to replace the leader if the messageisiared in time.

5.4 Other BLink Sub-protocols

We now consider the problem of inter-LM communication whee or both of the LMs is implemented using a
benign fault-tolerant state machine replication protoGilen that we have a solution for the (Byzantine, Byzantine
case, the simplest approach would be to modify the mappingtoil links to fit the other three cases: (benign, be-
nign), (benign, Byzantine), and (Byzantine, benign). Thmher of virtual links in the (benign, benign) case is set
to LCM(2F4 + 1, 2F5 +1). In the (benign, Byzantine) case, the number of virtudddiis LCMQF 4+ 1, 3Fp +1).

In the (Byzantine, benign) case, the number of virtual lisksCM(3F'4 + 1, 2Fp + 1).

10



We can use an argument similar to the one found in SectionoSptave the existence of a correct virtual link
in each of the cases. In the (benign, benign) case, the npypitds at least one correct virtual link. In the
(benign, Byzantine) and (Byzantine, benign) cases, théysinashows that at least/6 of the virtual links are
correct.

When the sending logical machine runs a benign fault-totgoeotocol, it is possible to use a different approach
to reduce the number of virtual links through which the LM inuscle before reaching a correct link. The approach
assumes that the correct servers in the sending LM can coroaterequally well with the correct servers in the
receiving LM. This assumption implies that there is no needHe sending LM to replace a correct forwarder. The
sending LM thus allows its forwarder to try different peergilit establishes a correct virtual link. The forwarder
will need to cycle through at mogts + 1 such peers before finding a correct one. The servers in tltérgehM
can use a standard ping/Hello protocol to monitor the staittise current forwarder. A server only votes to replace
the forwarder if it has not received a response from the folesawithin a timeout period. Note that this technique
is not applicable to the (Byzantine, benign) case, sincddivearder may be Byzantine faulty and cannot be trusted
to find a correct peer. We also note that we can reduce the-w@asst number of virtual links through which the
logical machine must cycle via the following optimizatiofvhen a forwarder detects that a peer is faulty, it locally
broadcasts a message indicating that the peer should edkiy other forwarders. The next forwarder then picks
up where the last forwarder left off. In this way, one can khiri the logical machine as rotating through a single
sequence of peers. Note that subsequent forwarders matyallgisend to peers that were previously diagnosed as
faulty, because a correct peer may be diagnosed as faultipduansient network partition.

5.5 Client Updates

Our architecture guarantees that if the system is stablaafidnt is connected to a stable site, the client will be
able to order its update. Since BLink provides efficient camioation between logical machines, it is technically
possible to treat each client as a non-replicated logicalhina and use BLink to provide Byzantine fault-tolerant
communication between clients and logical machines ctingisf servers. However, using BLink in this manner
requires (1) extra overhead that increases normal-caseigt(2) sending threshold-signed acknowledgements from
the LM to the client, and (3) a separate queue for each cli€htrefore, our architecture includes a specialized
protocol, CLink, which guarantees that clients will be aolefficiently and quickly inject updates into the system.
CLink only guarantees that a logical machine will order thent's update. Once this occurs, the wide-area protocol
running on the logical machines uses techniques similaiHb  guarantee global ordering.

CLink consists of two components. The first component, Cliinkllows a server that receives a new, correctly
signed client update to force the update to be ordered byettverss logical machine. CLink-1 can be used by any
server, regardless of whether the server is in the leader Léhe of the non-leader LMs. The second component,
CLink-2, is a simple optimistic forwarding protocol thapigally allows a non-leader LM server to forward a client
update directly to the leader LM without requiring that tleever's LM locally order the update. This mechanism
adds as little latency as possible and requires no crygtbgraoperations at the client's LM (if the LM is a non-
leader). In cases where optimistic forwarding fails beeaasnalicious server in the forwarding path drops the
message, the client retransmits its update, and its logieahine will locally order the update and then use the
BLink protocol to transmit the update to the leader LM. Thieqedure guarantees that the client's update will be
propagated to the leader LM, but requires additional latemz processing overhead.

The CLink-1 protocol ensures that a logical machine willdlbec order and process any client update received
by one of the LM’s correct servers. The leader LM uses CLirdalall such updates, while non-leader LMs use
CLink-1 only for those updates retransmitted by a clierttaresmitted updates are marked witleransmitflag. We
now describe the actions taken when a seniaexvokes CLink-1. Upon receiving an updatg,serverr generates an
Ordering Request(,., u, seq,) message, signs it, and sends it to the other servers in thejt is a local sequence
number, generated by that is incremented each timesends a nedrdering Requestnessage.

When a server receives &rdering Requesfrom r, it stores the message and forwards it to the leader. Addi-
tionally, the server sets a timeout on the message (whersetiver expects the message to be ordered within the
timeout period) if it has executed dllrdering Requestmessages from serverup to and includingseq, — 1. The
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leader attempts to order tlrdering Requestnessages from each server in round-robin fashion; it decidether
to propose arOrdering Requesfor a servers as follows. If the leader does not have @rdering Requesfrom
servers, then it moves to the next server modulb Otherwise, leOrdering Request OR{;, u, seqs) be theOr-
dering Requesimessage from serverwith the lowest sequence number. The leader prop6sesf seq, is one
greater than the sequence number of theQadering Requesexecuted or proposed frosm When a server executes
an Ordering Request,, u, seq;) message, it cancels the timeout associated with the egacotithat message,
if one is set. If the server has the né&xtdering Requestnessage from, it sets a timeout on that message. Note
that, if servers is Byzantine, some server might have receivedatiering Requesimessage from with the same
sequence numbekdg;) but a different update. In this case, the server cancelsritout but has explicit proof that
s is corrupt and can broadcast the proof to the rest of the erkF@ally, we note that CLink-1 can be optimized by
including only a digest of the update in tedering Requesmessage, reducing the amount of bandwidth consumed
when more than one server includes the same update@rdaring Request

We conclude with a brief description of the optimistic fordimg mechanism (CLink-2), and what happens when
it fails. Each client contains a randomly shuffled list of 8&vers in its site to which it sends updates. Similarly,
each server contains a randomly shuffled list of the serveeach of the other sites. Correct clients and servers
rotate through the entries in the lists when optimistic farging fails. When a client wants to submit an update,
it sends the update to a server in its site. Then the clietssasémeout. If the server that received the update is
correct, then it forwards the update to a server in the leht#efbased on its list of servers for the current leader
LM) and sets a timeout. The server in the leader LM, if corradl generate arDrdering Requesmessage and
invoke CLink-1. If the client’s timeout expires, then théedt generates a new signed update that is identical to the
first one, except that it contains a retransmit flag. The thends this retransmission fo+ 1 servers in its local site.
Therefore, at least one correct server will invoke CLinkafid the client's LM will locally order the retransmitted
update. The LM will then use the BLink protocol to propagdie tipdate to the leader site. The wide-area protocol
is responsible for replacing a malicious leader LM, if thel@sarea protocol is Byzantine fault-tolerant. The next
time the client sends an update, it will attempt an optimisgnd to the next server in its list. Similarly, the server
that forwarded the update also uses the next server intii§ilis timeout expired.

6 Performance Optimizations

Our composable architecture has significant computatioverdhead, because each LM must order all events that
cause state transitions in the wide-area protocol. ThisaByae fault-tolerant ordering (which in our architecture
uses digital signatures) is computationally costly. Iniadid, each LM threshold signs all outgoing messages, which
imposes an even greater computational cost. Consequentlyse Merkle hash trees [25] to amortize the cost of
threshold signing, and we improve the performance of LM epeocessing via well-known aggregation techniques.
These optimizations are appliedaly to the local protocols. Thus, there is a one-to-one cormed@ace between
wide-area messages in an optimized, composable protodotsannoptimized equivalent.

Merkle Tree Based Signatures: Instead of threshold signing every outgoing message, wergtna single
threshold signature, based on a Merkle hash tree, that & tosauthenticate several messages. Each outgoing
message is self-contained, including everything necg$savalidation (except the public key). The leaf nodes in a
Merkle hash tree contain the hashes of the messages thatoeedent. Each of the internal nodes contains a hash
of the concatenation of the two hashes in its children nodes. signature is generated over the hash contained in
the root. When a message is sent, we include the series odhésit can be used to generate the root hash. The
number of included hashes is Idg), whereN is the number of messages that were signed with the singiatsige.

L ogical Machine Event Processing: We use the aggregation technique described in [7] to inermsthroughput
of local event processing by the LM. The LM orders severah&vat once, allowing the LM to order thousands of
events per second over LANs while providing Byzantine fanlitrance. With this performance, it is likely that the
incoming wide-area bandwidth will limit throughput.
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Protocol Rounds Protocol Computational Costs
Protocol Wide Area| Local Area|| Total Protocol Threshold RSA Sign RSA Sign
Steward 2 4 6 Steward 1 3
Paxos/Paxog 2 6 8 Paxos/Paxos 0] 24(S-1)
BFT/Paxos 3 8 11 BFT/Paxos 03+2(5-1)
Paxos/BFT 2 11 13 Paxos/BFT 1]13+2(5-1)
BFT/BFT 3 15 18 BFT/BFT 2 144+4(5-1)
Table 1: Number of Protocol Rounds. Table 2: Number of expensive cryptographic operations ¢aah

server at the leader site does for one update.

7 Performance Evaluation

To evaluate the performance of our composable architeoiteeémplemented our protocols, including all neces-
sary communication and cryptographic functionality.

Testbed and Network Setup: We used a network topology consisting of 5 wide-area sit@sh eontaining 16
physical machines, to quantify the performance of our syste order to facilitate comparisons with Steward, we
chose to use the same topology and numbers of machines uggd IiNBFT is run within a site, then the site can
tolerate up to 5 Byzantine servers. If Paxos is run withinte, $hen the site can tolerate 7 benign server failures.
If BFT is run on the wide area, then the system can tolerateByzantine site compromise. If Paxos is run on the
wide area, then the system remains available if no more tharsites are disconnected from the others.

Our experimental testbed consists of a cluster with tweryGHz, 64-bit Intel Xeon computers. Each computer
can compute a 1024-bit RSA signature in 1.3 ms and verify 8.0V ms. For n=16, k=6, 1024-bit threshold
cryptography which we use for these experiments, a compatecompute a partial signature and verification proof
in 3.9 ms and combine the partial signatures in 3.4 ms. Thielesite was fully deployed on 16 machines, and the
other 4 sites were emulated by one computer each.

Each emulating computer performed the role of a represeataf a complete 16 server site. Therefore, our
testbed is equivalent to an 80 node system distributed a&adtes. Upon receiving a message, the emulating
computers busy-waited for the time it took a 16 server sithandle that packet and reply to it, including intra-
site communication and computation. We also modeled thesggtion used by our composable architecture. We
determined busy-wait times for each type of packet by bemckimg the different types of ordering protocols on
a fully deployed, 16 server site. The Spines [2] messagirsgesy was used to emulate latency and throughput
constraints on the wide-area links. We limited the caparfityide-area links to 10 Mbps in all tests.

We compared the performance results of five protocols, fowhich use our composable architecture:
Paxos/Paxos, BFT/Paxos, Paxos/BFT, BFT/BFT. The fifth isvaimplementation of Steward, which includes the
option of using the same optimization techniques used innew architecture. The updates in our experiments
carried a payload of 200 bytes, representative of an SQé&ratait.

We exclusively use RSA signatures for authentication, bmtlkonsistency with our previous work and to provide
non-repudiation, which is valuable when identifying milics servers. The benign fault-tolerant protocols use
RSA signatures to protect against external attackers. ehthis possible to use more efficient cryptography in the
compositions based on Paxos, these changes do not sigthffieffiect performance when our optimizations are
used. We also note that BFT can use MACs, which improves tighég and results in much better performance
when no aggregation is used. However, this change has aesm#dct on our optimized protocols, because the total
update latency is dominated by the wide-area latency.

Protocol Rounds and Cryptographic Costs. Table 1 shows the number of protocol rounds in Steward, and
in each of the four combinations of our composable architect The protocol rounds are classified as wide-area
when the message is sent between sites, and local-area twhsent between two physical machines within a site.
Steward has the least rounds of any of the protocols, inofuBiaxos/Paxos. The difference in total rounds ranges
from 6 (Steward) to 18 (BFT/BFT). However, it is importantdbserve that all of the protocols listed have either
two or three wide-area rounds.

Table 2 shows the computationally expensive cryptograpperations required for each update at the leader site
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when the optimizations presented in Section 6 are not udeelcdsts are a function of the number of sites, denoted
by S. The table shows the number of threshold signatures to wé@dch server in the leader must contribute and the
number of RSA signatures that each server in the leader sig¢ compute. In the tests presented in this paper, the
unoptimized versions of our algorithm are always limiteccbynputational resources. Consequently, these costs are
inversely proportional to the maximum throughput.

Architectural Comparison: To evaluate the overhead of our composable architecturgaed to that of Stew-
ard, we first compare the performance of the five protocolsrwhe optimizations presented in Section 6 are not
used. We wish to make clear that the unoptimized results toeflect our architecture’s actual performance. We
specifically removed the optimizations to provide a cleatyse of their benefits. We used a symmetric configura-
tion where all sites are connected to each other with 50 msléimg crossing the continental US), 10Mbps links.
Each client sends an update to a server in its site, waitsémf phat the update was ordered, and then immediately
injects the next update.

Figure 3 shows update throughput as a function of the numbeliemts. In all of the protocols, throughput
initially increases as the number of clients increases. Mithe load on the CPU increases to 100%, throughput
plateaus. This graph shows the performance benefit of Sd&aaachitecture. In Steward, external wide-area accept
messages do not need to be ordered before the replicas casprithem. Steward achieves over twice the perfor-
mance of Paxos/BFT, its equivalent composition, refledtirgprice of clean separation. Steward even outperforms
Paxos/Paxos, which has more ordering and RSA signatureaiame but does not use threshold signatures. The
initial slope of these curves is most dependent on the nuofhveide-area protocol rounds. The peak performance of
each of the protocols is a function of the number of cryptpgi@operations (see Table 2). The Paxos/BFT composi-
tion has about twice the throughput of the BFT/BFT compositand it has approximately half of the cryptographic
costs. A similar relationship exists between Paxos/Pard<B& T/Paxos.

Figure 4 shows average update latency measured at thes@deatfunction of the number of clients. In each of the
curves, the update latency remains approximately constantthe CPU is 100% utilized, at which point, latency
climbs as the number of clients increases. In our system,ugaejclient updates if the system is overburdened and
inject these updates in the order in which they were received

Figures 5 and 6 show the results for the same tests as abdv&@@tms network diameter. We observe the same
maximum bandwidth and latency trends. Additional lateneytiee wide-area links reduces the slope of the lines in
Figure 5 (update throughput), but has no effect on the maxirttwoughput that is achieved.

Performance of Optimized Protocols. We now present the performance of the five protocols with {hie o
mizations described in Section 6. In these protocols, tls¢ abthe cryptographic operations listed in Table 2 are
amortized over several updates when CPU load is high. Irr&sinto the unoptimized protocols, none of our op-
timized protocols were CPU limited in the following testsakimum throughput was always limited by wide-area
bandwidth constraints. In all cases, the optimized prdtocmreased throughput by at least a factor of 4 compared
to their unoptimized versions.

In Figures 7 and 9 (discussed below), we include two themaktihroughput upper bounds of a Paxos/BFT com-
position in which LMs redundantly send physical messages the wide area to ensure reliable inter-LM commu-
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nication. We computed the maximum throughput by assumiagttie wide-area Proposal message sent from the
leader site contains at least a signed update from the @dmhian RSA signature from the LM (456 bytes total).
We present bounds based on (1)(gn+ 1)? protocol where the leader site would need to redundantlyl 8énof
these messages to each of the other 4 sites per update an(2)}-al) peer protocol where the leader site would
redundantly send 11 messages to each site per update. Dimel ggotocol was included within the original Steward
system for use during view changes, but we are unaware of luey systems that use it. The upper bound is the
throughput at which the leader site’s outgoing link reactegsiration. The difference between the redundant send
upper bounds and the performance of Paxos/BFT (with BLittklsts to the importance of the BLink protocol.

Figure 7 shows the update throughput as a function of the ruwftclients. The relative maximum throughput
and slopes of the curves are very different from the unoptuahiversions. For example, Paxos/Paxos, Steward,
and Paxos/BFT have almost the same maximum throughput. afteists to the effectiveness of the optimizations
in greatly reducing the performance overhead associatdu ci@an separation. The optimization improves the
performance of the compositions more than it improves Stwacause the composable architecture uses many
more local rounds. In a wide-area environment, local rolardsrelatively inexpensivié they do not consume too
much computational resources. The optimizations elimitlais computational bottleneck. Thus, performance of
the optimized version is predominantly dependent on thetrauraf wide-area protocol rounds.

The local-area protocol has a smaller, but significantcetia performance. The slopes of the curves are different
because of the difference in latency contributed by theldacea protocols. BFT and threshold signing contribute
the greatest latency. As a result, Steward has a steepertslap its equivalent composition, Paxos/BFT. Here also,
we can see the benefit of Steward, but the performance differs considerably smaller than in the unoptimized
protocols. Paxos contributes very little latency and tfuges Paxos/Paxos’s performance slightly exceeds Stesvard
Note that Paxos/Paxos benefits slightly more than Steward fthe optimizations, because Paxos/Paxos locally
orders more messages than Steward (which orders the updatky lonly once).

Figure 8 shows the average update latency in the same exgreridlthough aggregation is commonly associated
with an increase in latency, the optimized protocols haweilar or lower latency compared to the unoptimized
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Figure 9: Throughput of Optimized Protocols, 100 ms Diamete Figure 10: Latency of Optimized Protocols, 100 ms Diameter

variants. An LM must locally order at least two external nages to execute a client’s update. Therefore, even
with a single client in the system, if the external acceptsagss arrive at about the same time, the latency can be
lower with aggregation. When there are many clients, thesgeelatency of the optimized protocols is considerably
less than the latency of the unoptimized protocols, becthes®ptimized protocols have much higher maximum
throughput. Figures 9 and 10 validate the same trends on ent@Bameter network.

Discussion: Our optimized composable architecture achieves praghedbrmance, with throughputs of hun-
dreds of updates per second, even while offering the streogrity guarantees of BFT/BFT. The performance of
Paxos/BFT represents a factor of 4 improvement compardtthetprevious state of the art for wide-area Byzantine
replication (i.e., unoptimized Steward). The performaatéhe unoptimized protocols is computationally limited
and reflects the cost associated with achieving compogeaiid flexibility. Our results show that the optimizations
effectively eliminate this performance bottleneck.

8 Safety and Liveness Proof Sketch

Our composable architecture offers flexibility by sepamgtine wide-area protocol, run among the logical ma-
chines, from the local-area protocol, run within the logiocegachine. As a direct consequence, it is possible to
use a variety of replication protocols at each level of trerdnchy. Our architecture uses Paxos and BFT, both of
which guarantee safety and liveness under certain synglassumptions. Therefore, we can directly use the known
properties of these protocols when proving safety and éigsrof our hierarchical architecture.

Paxos and BFT do not rely on synchrony assumptions for safstg result, the safety of a protocol composition
follows directly from the safety of these two protocols. Theal state machine replication protocol used in the
ordering component ensures that all replicas in a logicamim& transition through the same states and invoke the
signing component on identical outgoing messages. WheningrBFT in the logical machine, we use threshold
cryptography so that malicious servers cannot generatsages that are signed by the logical machine. Thus the
logical machine will not exhibit two-faced behavior assogiihat it contains at mogtmalicious servers. In a system
where BFT is run on the wide area, the wide area protocol gieea safety if at mogt sites are compromised.

We now show that protocol compositions using Paxos and BETia if the system is stable, as described in
Section 3. Paxos and BFT guarantee liveness when the medsiayedoes not grow faster than the timeout used
to detect a failed leader. In a flat system, the message deldgniinated by wide-area network latency. In our
system, message delay is a function of both network latendytlze delay associated with local ordering of wide-
area protocol events. The message delay can be expressag,as:= (MAX, + 1)(L + (MAX ¢ + 2)Tjocal)
where M AX,; denotes the maximum value 6%, across all logical links/. denotes the maximum latency due
to network round trip and acknowledgment timer granulatyA.X ; is the maximum number of faults tolerated
by any site, andl},.,; denotes the timeout used to detect a failed local leader. (Fhd X,;) term reflects the
maximum number of virtual links through which a logical mehmight need to rotate before reaching a correct
one. The remaining term is the BLink protocol timeout, whistdependent o, andTcq;- Tioca; 1S Multiplied
by (M AX; + 2) because there must be enough time to rotate through tipAd s malicious local leaders at the
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receiving site.

When the system is stable, all of the terms in the equatiorcamstant except fo¥},..;. Thus, if Tj,., does
not grow faster than the timeout used to detect a failed lesitie in the wide-area protocol, then the composable
system is live. In a stable system, either progress occurgide-area protocol leaders are elected continuously
and the wide-area timeout continues to increase. The titae@ra calculated according to the following equations:
Tiocal = 7*Viecal wherea is any positive constant],.; is the local-area protocol view number, ani$ any constant
greater than 17 0pa = /BVgtobar whereT ., is the wide-area protocol timeout,is any positive constant, and
Vyioval 1S the wide-area protocol view number.alf< 3, then the timeouts will grow as required for system liveness

9 Discussion

Our composable architecture can be extended by adding ipdieatéon protocols for use on the wide area or local
area besides Paxos and BFT. Several existing protocoléderoesirable properties and are promising candidates
for use within our system. As demonstrated in Section 7, saig& protocol rounds are very costly due both to
increased latency and increased message complexity. foteréf a system requires Byzantine fault tolerance
and high performance and can tolerate reduced availalMigytin and Alvisi’s two-round Byzantine fault-tolerant
replication protocol [23] is well-suited for use as our wiaea protocol. We believe that a composition that used
this protocol would approach the performance of a commositiat used Paxos on the wide area, because both are
two-round protocols. The work of Yin et al. on privacy firelgd35] can also be used effectively within a site, as
part of our local-area protocol. Verrisimo’s work on hybecthitectures [8, 34] is another excellent candidate for
use within our architecture. Special trusted hardwareghatides stronger guarantees within a site can be used to
strengthen the fault tolerance of our logical machines.

Finally, we note that the consistency guarantees of our-arda protocol can be relaxed for use with systems that
do not require state machine replication semantics. Fanpkg a composition could use a state machine replication
protocol as the local-area protocol and a benign faultdoieanti-entropy protocol [13] on the wide area.

10 Conclusions

This paper presented a customizable, scalable replicataitecture, tailored to systems that span multiple wide-
area sites. Our architecture constructs logical machemsahced for use on wide-area networks) out of the physical
machines in each site using the state machine approacHirgnfibe substitution of the fault tolerance method used
in each site and in the wide-area replication protocol. Vés@nted BLink, a new Byzantine fault-tolerant commu-
nication protocol that provides efficient and reliable watea communication between logical machines. BLink
was shown to be a critical addition to the logical machindralbtion for wide-area networks, where bandwidth con-
straints limit performance. An experimental evaluatioovgld that our optimized architecture achieves a maximum
wide-area Byzantine replication throughput at least foues higher than the previous state of the art.
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