Review

- Wireless = electro-magnetic waves
- Path-loss over distance
- Multi-path reflections
- Modulation
Symbol Rate & Bandwidth

- Modulation allows transmission of one of several possible symbols (two or more)
- Data stream is encoded by transmitting several symbols in succession
- Symbol rate \approx bandwidth
 - Throughput (bits/sec)
 - Spectrum usage (Hz)
- Inter-symbol interference (ISI) occurs unless delay spread \ll symbol time
Thermal Noise

- Ever-present thermal noise in wireless medium
- Sums with any wireless transmission
- Potentially causes errors in reception (digital) or degradation of quality (analog)
- Effectively limits transmission range when transmitting signal strength falls below noise floor
- -174 dBm/Hz
Thermal Noise Calculation

- Depends on channel bandwidth
 - About 25 MHz for 802.11b or 802.11a channel

- \[= -174\text{dBm/Hz} + 10\log(\text{bandwidth in Hz}) \]

- So for 802.11
 - Noise Floor is about -100 dBm
 - -100 dBm = 10\log(0.0000000000001\,\text{Watts})
Noise Limits Transmitting Distance

Short range transmission (low path loss)

Long range transmission (high path loss)

Signal to Noise Ratio (SNR)

High

Low
Physical Channel Properties Review

- **Wireless signal strength**
 - Transmit power
 - Loss over distance (falls off by d^2)
 - Shadowing (e.g. absorption by walls)
 - Multi-path (e.g. bouncing off of metal objects)

- **Noise**
 - Thermal noise floor
 - Environmental noise (e.g. microwave ovens)

- **Channel quality**
 - Related to signal to noise ratio